cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A200375 Product of Catalan and Jacobsthal numbers: a(n) = A000108(n)*A001045(n+1).

Original entry on oeis.org

1, 1, 6, 25, 154, 882, 5676, 36465, 244530, 1657942, 11471668, 80242890, 568080772, 4056976900, 29212908120, 211783889025, 1544811959970, 11328491394990, 83473572128100, 617702666484750, 4588654943721420, 34206312386929020, 255803818897858920, 1918528298674328250, 14427334095935095764
Offset: 0

Views

Author

Paul D. Hanna, Nov 16 2011

Keywords

Comments

More generally, given {S} such that: S(n) = b*S(n-1) + c*S(n-2), |b|>0, |c|>0, then Sum_{n>=0} S(n)*Catalan(n)*x^n = sqrt( (1-2*b*x - sqrt(1-4*b*x-16*c*x^2))/(2*b^2+8*c) )/x.

Examples

			G.f.: A(x) = 1 + x + 2*3*x^2 + 5*5*x^3 + 14*11*x^4 + 42*21*x^5 + 132*43*x^6 + 429*85*x^7 + 1430*171*x^8 +...+ A000108(n)*A001045(n)*x^n +...
The g.f. of the Jacobsthal sequence A001045, F(x) = 1/(1-x-2*x^2), begins:
F(x) = 1 + x + 3*x^2 + 5*x^3 + 11*x^4 + 21*x^5 + 43*x^6 + 85*x^7 + 171*x^8 +...
The g.f. of A200376, where G(x) =  A(x/G(x)), begins:
G(x) = 1 + x + 5*x^2 + 9*x^3 + 37*x^4 + 81*x^5 + 301*x^6 + 729*x^7 +...
in which the odd-indexed coefficients are powers of 9.
		

Crossrefs

Programs

  • Mathematica
    Array[CatalanNumber[# - 1] (2^# - (-1)^#)/3 &, 25] (* Michael De Vlieger, Apr 24 2018 *)
  • PARI
    {a(n) = binomial(2*n, n)/(n+1) * (2^(n+1) + (-1)^n)/3}
    
  • PARI
    {a(n) = polcoef(sqrt((1-2*x - sqrt(1-4*x-32*x^2 +O(x^(n+3))))/2)/(3*x), n)}
    
  • PARI
    {a(n) = polcoef((1/x)*serreverse(x-x^2 - 4*x^3*sum(m=0,n\2,binomial(2*m,m)/(m+1)*3^m*x^(2*m)) +x^3*O(x^n)), n)}

Formula

G.f.: sqrt( (1-2*x - sqrt(1-4*x-32*x^2))/2 )/(3*x).
G.f.: (1/x)*Series_Reversion(x-x^2 - 4*x^3*Sum_{n>=0} A000108(n)*3^n*x^(2*n) ).
G.f. satisfies: A(x) = G(x*A(x)) and G(x) = A(x/G(x)) where G(x) is the g.f. of A200376: G(x) = 1/sqrt(1-10*x^2 + x^4/(1-8*x^2)) + x/(1-9*x^2).
n*(n+1)*a(n) -2*n*(2*n-1)*a(n-1) -8*(2*n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Nov 17 2011
a(n) = binomial(2*n,n)/(n+1) * (2^(n+1) + (-1)^n)/3.
From Peter Bala, Aug 17 2021: (Start)
G.f.: A(x) = (sqrt(1 + 4*x) - sqrt(1 - 8*x))/(6*x).
A(x) = 1/sqrt(1 + 4*x)*c( 3*x/(1 + 4*x) ), where c(x) = (1 - sqrt(1- 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. Cf. A151374.
In general, [x^n] ( 1/sqrt(1 + 4*x)*c( k*x/(1 + 4*x) ) ) = Catalan(n)*((k-1)^(n+1) + (-1)^(n+1))/k.
A(x) = 1/sqrt(1 - 8*x)*c( -3*x/(1 - 8*x) ). (End)
G.f. A(x) satisfies A(x) = sqrt( 1 + 2*x*A(x)^2 + 9*x^2*A(x)^4 ). - Paul D. Hanna, Dec 14 2024

Extensions

Typo in Name corrected by Peter Bala, Aug 17 2021

A277604 Array of coefficients T(k,n) of the formal power series A(k,x) read by upwards antidiagonals, where A(k,x) = sqrt(1 + 2*x*A(k,x) + (4*k+1)*x^2*(A(k,x))^2), k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 5, 1, 1, 1, 7, 9, 13, 1, 1, 1, 9, 13, 37, 25, 1, 1, 1, 11, 17, 73, 81, 61, 1, 1, 1, 13, 21, 121, 169, 301, 125, 1, 1, 1, 15, 25, 181, 289, 841, 729, 295, 1, 1, 1, 17, 29, 253, 441, 1801, 2197, 2549, 625, 1, 1, 1, 19, 33, 337, 625, 3301, 4913, 10123, 6561, 1447, 1
Offset: 0

Views

Author

Werner Schulte, Oct 29 2016

Keywords

Comments

For k = 0 see A000012, for k = 1 see A098615, and for k = 2 see A200376.
It will be interesting using the formulae for k < 0 (attention: signed terms!). Especially for k = -1 see A157674.
If G is the g.f. of central binomial coefficients (see A000984) and B(k,x) = G(k*x^2), then B(k,x) = A(k,x)/(1+x*A(k,x)) and A(k,x) = B(k,x) / (1-x*B(k,x)) for k >= 0. - Werner Schulte, Aug 07 2017

Examples

			The terms define the array T(k,n) for k >= 0 and n >= 0, i.e.,
k\n  0  1   2   3    4     5      6      7       8        9  . . .
0:   1  1   1   1    1     1      1      1       1        1  . . .
1:   1  1   3   5   13    25     61    125     295      625  . . .
2:   1  1   5   9   37    81    301    729    2549     6561  . . .
3:   1  1   7  13   73   169    841   2197   10123    28561  . . .
4:   1  1   9  17  121   289   1801   4913   28057    83521  . . .
5:   1  1  11  21  181   441   3301   9261   63071   194481  . . .
6:   1  1  13  25  253   625   5461  15625  123565   390625  . . .
7:   1  1  15  29  337   841   8401  24389  219619   707281  . . .
8:   1  1  17  33  433  1089  12241  35937  362993  1185921  . . .
9:   1  1  19  37  541  1369  17101  50653  567127  1874161  . . .
etc.
		

Crossrefs

Formula

A(k,x) = (x + sqrt(1 - 4*k*x^2))/(1 - (4*k+1)*x^2) for k >= 0.
T(k,0) = 1 and T(k,2*n+2) = (4*k+1)^(n+1)-2*(Sum_{i=0..n} A000108(i)*k^(i+1)* (4*k+1)^(n-i)), and T(k,2*n+1) = (4*k+1)^n for k >= 0 and n >= 0.
A(k,x) = 1/(1 - x - 2*k*x^2*C(k*x^2)), k >= 0, where C is the g.f. of A000108.
Conjecture: If B(k,n) satisfy B(k,0) = B(k,1) = 1 and B(k,n+2) = B(k,n+1) + k*B(k,n) for k >= 0 and n >= 0 (generalized Fibonacci numbers, see A015441) and G(k,x) = Sum_{n>=0} A000108(n)*B(k,n)*x^n for k >= 0, then you will have (1): A(k,x*G(k,x)) = G(k,x) and (2): G(k,x/A(k,x)) = A(k,x) for k >= 0. Especially for k = 1 see A098615 and for k = 2 see A200376.
Conjecture: T(k,2*n) = Sum_{i=0..n} A046521(n,i)*k^(n-i) for k, n >= 0. - Werner Schulte, Aug 02 2017
Recurrence: T(k,2*n+2) = (4*k+1)*T(k,2*n)-2*k^(n+1)*A000108(n) with initial value T(k,0) = 1 for k >= 0 and n >= 0. - Werner Schulte, Aug 09 2017
T(k,n) = Sum_{i=0..n} A111959(n,i)*k^((n-i)/2) for k >= 0 and n >= 0. - Werner Schulte, Aug 09 2017
Showing 1-2 of 2 results.