cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A054341 Row sums of triangle A054336 (central binomial convolutions).

Original entry on oeis.org

1, 2, 5, 12, 30, 74, 185, 460, 1150, 2868, 7170, 17904, 44760, 111834, 279585, 698748, 1746870, 4366460, 10916150, 27287944, 68219860, 170541252, 426353130, 1065853432, 2664633580, 6661479944, 16653699860, 41633878200, 104084695500, 260210401530, 650526003825
Offset: 0

Views

Author

Wolfdieter Lang, Mar 13 2000

Keywords

Comments

a(n) = # Dyck (n+1)-paths all of whose components are symmetric. A strict Dyck path is one with exactly one return to ground level (necessarily at the end). Every nonempty Dyck path is expressible uniquely as a concatenation of one or more strict Dyck paths, called its components. - David Callan, Mar 02 2005
a(n) = # 2-Motzkin paths (i.e., Motzkin paths with blue and red level steps) with no level steps at positive height. Example: a(2)=5 because, denoting U=(1,1), D=(1,-1), B=blue (1,0), R=red (1,0), we have BB, BR, RB, RR, and UD. - Emeric Deutsch, Jun 07 2011
Inverse Chebyshev transform of the second kind applied to 2^n. This maps g(x) -> c(x^2)g(xc(x^2)). - Paul Barry, Sep 14 2005
Hankel transform of this sequence gives A000012 = [1,1,1,1,1,1,1,...]. - Philippe Deléham, Oct 24 2007
Inverse binomial transform of A059738. - Philippe Deléham, Nov 24 2009

Examples

			a(4) = 30, the upper left term of M^4.
		

Crossrefs

Programs

  • Maple
    b:= proc(x, y) option remember; `if`(x=0, 1,
          b(x-1, 0)+`if`(y>0, b(x-1, y-1), 0)+b(x-1, y+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..31);  # Alois P. Heinz, Jan 23 2024
  • Mathematica
    CoefficientList[Series[2/(1-4*x+Sqrt[1-4*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)

Formula

a(n) = Sum_{m=0..n} A054336(n, m).
G.f.: 1/(1-2*x-x^2*c(x^2)), where c(x) = g.f. for Catalan numbers A000108.
From_Paul Barry_, Sep 14 2005: (Start)
G.f.: c(x^2)/(1-2*x*c(x^2));
a(n) = Sum_{k=0..n} binomial(n,(n-k)/2)*(1 + (-1)^(n+k))*2^k*(k+1)/(n+k+2). (End)
G.f.: 2/(1-4*x+sqrt(1-4*x^2)). - Ira M. Gessel, Oct 27 2013
a(n) = A127358(n+1) - 2*A127358(n). - Philippe Deléham, Mar 02 2007
a(n) = A126075(n,0). - Philippe Deléham, Nov 24 2009
a(n) = Sum_{k=0..n} A053121(n,k)*2^k. - Philippe Deléham, Nov 28 2009
From Gary W. Adamson, Sep 07 2011: (Start)
a(n) is the upper left term of M^n, M is an infinite square production matrix as follows:
2, 1, 0, 0, 0, ...
1, 0, 2, 0, 0, ...
0, 1, 0, 1, 0, ...
0, 0, 1, 0, 1, ...
0, 0, 0, 1, 0, ...
... (End)
Conjecture: 2*(n+1)*a(n) +5*(-n-1)*a(n-1) +8*(-n+2)*a(n-2) +20*(n-2)*a(n-3)=0. - R. J. Mathar, Nov 30 2012
a(n) ~ 3 * 5^n / 2^(n+2). - Vaclav Kotesovec, Feb 13 2014

A053121 Catalan triangle (with 0's) read by rows.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 2, 0, 3, 0, 1, 0, 5, 0, 4, 0, 1, 5, 0, 9, 0, 5, 0, 1, 0, 14, 0, 14, 0, 6, 0, 1, 14, 0, 28, 0, 20, 0, 7, 0, 1, 0, 42, 0, 48, 0, 27, 0, 8, 0, 1, 42, 0, 90, 0, 75, 0, 35, 0, 9, 0, 1, 0, 132, 0, 165, 0, 110, 0, 44, 0, 10, 0, 1, 132, 0, 297, 0, 275, 0, 154, 0, 54, 0, 11, 0
Offset: 0

Views

Author

Keywords

Comments

Inverse lower triangular matrix of A049310(n,m) (coefficients of Chebyshev's S polynomials).
Walks with a wall: triangle of number of n-step walks from (0,0) to (n,m) where each step goes from (a,b) to (a+1,b+1) or (a+1,b-1) and the path stays in the nonnegative quadrant.
T(n,m) is the number of left factors of Dyck paths of length n ending at height m. Example: T(4,2)=3 because we have UDUU, UUDU, and UUUD, where U=(1,1) and D=(1,-1). (This is basically a different formulation of the previous - walks with a wall - property.) - Emeric Deutsch, Jun 16 2011
"The Catalan triangle is formed in the same manner as Pascal's triangle, except that no number may appear on the left of the vertical bar." [Conway and Smith]
G.f. for row polynomials p(n,x) := Sum_{m=0..n} (a(n,m)*x^m): c(z^2)/(1-x*z*c(z^2)). Row sums (x=1): A001405 (central binomial).
In the language of the Shapiro et al. reference such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Bell-subgroup of the Riordan-group. The g.f. Ginv(x) of the m=0 column of the inverse of a given Bell-matrix (here A049310) is obtained from its g.f. of the m=0 column (here G(x)=1/(1+x^2)) by Ginv(x)=(f^{(-1)}(x))/x, with f(x) := x*G(x) and f^{(-1)}is the compositional inverse function of f (here one finds, with Ginv(0)=1, c(x^2)). See the Shapiro et al. reference.
Number of involutions of {1,2,...,n} that avoid the patterns 132 and have exactly k fixed points. Example: T(4,2)=3 because we have 2134, 4231 and 3214. Number of involutions of {1,2,...,n} that avoid the patterns 321 and have exactly k fixed points. Example: T(4,2)=3 because we have 1243, 1324 and 2134. Number of involutions of {1,2,...,n} that avoid the patterns 213 and have exactly k fixed points. Example: T(4,2)=3 because we have 1243, 1432 and 4231. - Emeric Deutsch, Oct 12 2006
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1 . Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0) -> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
Riordan array (c(x^2),xc(x^2)), where c(x) is the g.f. of Catalan numbers A000108. - Philippe Deléham, Nov 25 2007
A053121^2 = triangle A145973. Convolved with A001405 = triangle A153585. - Gary W. Adamson, Dec 28 2008
By columns without the zeros, n-th row = A000108 convolved with itself n times; equivalent to A = (1 + x + 2x^2 + 5x^3 + 14x^4 + ...), then n-th row = coefficients of A^(n+1). - Gary W. Adamson, May 13 2009
Triangle read by rows,product of A130595 and A064189 considered as infinite lower triangular arrays; A053121 = A130595*A064189 = B^(-1)*A097609*B where B = A007318. - Philippe Deléham, Dec 07 2009
From Mark Dols, Aug 17 2010: (Start)
As an upper right triangle, rows represent powers of 5-sqrt(24):
5 - sqrt(24)^1 = 0.101020514...
5 - sqrt(24)^2 = 0.010205144...
5 - sqrt(24)^3 = 0.001030928...
(Divided by sqrt(96) these powers give a decimal representation of the columns of A007318, with 1/sqrt(96) being the middle column.) (End)
T(n,k) is the number of dispersed Dyck paths of length n (i.e., Motzkin paths of length n with no (1,0) steps at positive heights) having k (1,0)-steps. Example: T(5,3)=4 because, denoting U=(1,1), D=(1,-1), H=(1,0), we have HHHUD, HHUDH, HUDHH, and UDHHH. - Emeric Deutsch, Jun 01 2011
Let S(N,x) denote the N-th Chebyshev S-polynomial in x (see A049310, cf. [W. Lang]). Then x^n = sum_{k=0..n} T(n,k)*S(k,x). - L. Edson Jeffery, Sep 06 2012
This triangle a(n,m) appears also in the (unreduced) formula for the powers rho(N)^n for the algebraic number over the rationals rho(N) = 2*cos(Pi/N) = R(N, 2), the smallest diagonal/side ratio R in the regular N-gon:
rho(N)^n = sum(a(n,m)*R(N,m+1),m=0..n), n>=0, identical in N >= 1. R(N,j) = S(j-1, x=rho(N)) (Chebyshev S (A049310)). See a comment on this under A039599 (even powers) and A039598 (odd powers). Proof: see the Sep 06 2012 comment by L. Edson Jeffery, which follows from T(n,k) (called here a(n,k)) being the inverse of the Riordan triangle A049310. - Wolfdieter Lang, Sep 21 2013
The so-called A-sequence for this Riordan triangle of the Bell type (c(x^2), x*c(x^2)) (see comments above) is A(x) = 1 + x^2. This proves the recurrence given in the formula section by Henry Bottomley for a(n, m) = a(n-1, m-1) + a(n-1, m+1) for n>=1 and m>=1, with inputs. The Z-sequence for this Riordan triangle is Z(x) = x which proves the recurrence a(n,0) = a(n-1,1), n>=1, a(0,0) = 1. For A- and Z-sequences for Riordan triangles see the W. Lang link under A006232. - Wolfdieter Lang, Sep 22 2013
Rows of the triangle describe decompositions of tensor powers of the standard (2-dimensional) representation of the Lie algebra sl(2) into irreducibles. Thus a(n,m) is the multiplicity of the m-th ((m+1)-dimensional) irreducible representation in the n-th tensor power of the standard one. - Mamuka Jibladze, May 26 2015
The Riordan row polynomials p(n, x) belong to the Boas-Buck class (see a comment and references in A046521), hence they satisfy the Boas-Buck identity: (E_x - n*1)*p(n, x) = (E_x + 1)*Sum_{j=0..n-1} (1/2)*(1 - (-1)^j)*binomial(j+1, (j+1)/2)*p(n-1-j, x), for n >= 0, where E_x = x*d/dx (Euler operator). For the triangle a(n, m) this entails a recurrence for the sequence of column m, given in the formula section. - Wolfdieter Lang, Aug 11 2017
From Roger Ford, Jan 22 2018: (Start)
For row n, the nonzero values represent the odd components (loops) formed by n+1 nonintersecting arches above and below the x-axis with the following constraints: The top has floor((n+3)/2) starting arches at position 1 and the next consecutive odd positions. All other starting top arches are in even positions. The bottom arches are a rainbow of arches. If the component=1 then the arch configuration is a semimeander solution.
Examples: For row 3 {0, 2, 0, 1} there are 3 arch configurations: 2 arch configurations have a component=1; 1 has a component=3. c=components, U=top arch starting in odd position, u=top arch starting in an even position, d=ending top arch:
.
top UuUdUddd c=3 top UdUuUddd c=1 top UdUdUudd c=1
/\ /\
//\\ / \
// \\ / /\ \ /\
// \\ / / \ \ / \
///\ /\\\ /\ / / /\ \ \ /\ /\ / /\ \
\\\ \/ /// \ \ \ \/ / / / \ \ \ \/ / / /
\\\ /// \ \ \ / / / \ \ \ / / /
\\\/// \ \ \/ / / \ \ \/ / /
\\// \ \ / / \ \ / /
\/ \ \/ / \ \/ /
\ / \ /
\/ \/
For row 4 {2, 0, 3, 0, 1} there are 6 arch configurations: 2 have a component=1; 3 have a component=3: 1 has a component=1. (End)

Examples

			Triangle a(n,m) begins:
  n\m  0   1   2   3   4   5   6  7  8  9 10 ...
  0:   1
  1:   0   1
  2:   1   0   1
  3:   0   2   0   1
  4:   2   0   3   0   1
  5:   0   5   0   4   0   1
  6:   5   0   9   0   5   0   1
  7:   0  14   0  14   0   6   0  1
  8:  14   0  28   0  20   0   7  0  1
  9:   0  42   0  48   0  27   0  8  0  1
  10: 42   0  90   0  75   0  35  0  9  0  1
  ... (Reformatted by _Wolfdieter Lang_, Sep 20 2013)
E.g., the fourth row corresponds to the polynomial p(3,x)= 2*x + x^3.
From _Paul Barry_, May 29 2009: (Start)
Production matrix is
  0, 1,
  1, 0, 1,
  0, 1, 0, 1,
  0, 0, 1, 0, 1,
  0, 0, 0, 1, 0, 1,
  0, 0, 0, 0, 1, 0, 1,
  0, 0, 0, 0, 0, 1, 0, 1,
  0, 0, 0, 0, 0, 0, 1, 0, 1,
  0, 0, 0, 0, 0, 0, 0, 1, 0, 1 (End)
Boas-Buck recurrence for column k = 2, n = 6: a(6, 2) = (3/4)*(0 + 2*a(4 ,2) + 0 + 6*a(2, 2)) = (3/4)*(2*3 + 6) = 9. - _Wolfdieter Lang_, Aug 11 2017
		

References

  • J. H. Conway and D. A. Smith, On Quaternions and Octonions, A K Peters, Ltd., Natick, MA, 2003. See p. 60. MR1957212 (2004a:17002)
  • A. Nkwanta, Lattice paths and RNA secondary structures, in African Americans in Mathematics, ed. N. Dean, Amer. Math. Soc., 1997, pp. 137-147.

Crossrefs

Cf. A008315, A049310, A000108, A001405 (row sums), A145973, A153585, A108786, A037952. Another version: A008313. A039598 and A039599 without zeros, and odd and even numbered rows.
Variant without zero-diagonals: A033184 and with rows reversed: A009766.

Programs

  • Haskell
    a053121 n k = a053121_tabl !! n !! k
    a053121_row n = a053121_tabl !! n
    a053121_tabl = iterate
       (\row -> zipWith (+) ([0] ++ row) (tail row ++ [0,0])) [1]
    -- Reinhard Zumkeller, Feb 24 2012
    
  • Maple
    T:=proc(n,k): if n+k mod 2 = 0 then (k+1)*binomial(n+1,(n-k)/2)/(n+1) else 0 fi end: for n from 0 to 13 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form; Emeric Deutsch, Oct 12 2006
    F:=proc(l,p) if ((l-p) mod 2) = 1 then 0 else (p+1)*l!/( ( (l-p)/2 )! * ( (l+p)/2 +1)! ); fi; end;
    r:=n->[seq( F(n,p),p=0..n)]; [seq(r(n),n=0..15)]; # N. J. A. Sloane, Jan 29 2011
    A053121 := proc(n,k) option remember; `if`(k>n or k<0,0,`if`(n=k,1,
    procname(n-1,k-1)+procname(n-1,k+1))) end proc:
    seq(print(seq(A053121(n,k), k=0..n)),n=0..12); # Peter Luschny, May 01 2011
  • Mathematica
    a[n_, m_] /; n < m || OddQ[n-m] = 0; a[n_, m_] = (m+1) Binomial[n+1, (n-m)/2]/(n+1); Flatten[Table[a[n, m], {n, 0, 12}, {m, 0, n}]] [[1 ;; 90]] (* Jean-François Alcover, May 18 2011 *)
    T[0, 0] := 1; T[n_, k_]/;0<=k<=n := T[n, k] = T[n-1, k-1]+T[n-1, k+1]; T[n_, k_] := 0; Flatten@Table[T[n, k], {n, 0, 12}, {k, 0, n}] (* Oliver Seipel, Dec 31 2024 *)
  • PARI
    T(n, m)=if(nCharles R Greathouse IV, Mar 09 2016
  • Sage
    def A053121_triangle(dim):
        M = matrix(ZZ,dim,dim)
        for n in (0..dim-1): M[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n,k] = M[n-1,k-1] + M[n-1,k+1]
        return M
    A053121_triangle(13) # Peter Luschny, Sep 19 2012
    

Formula

a(n, m) := 0 if n
a(n, m) = (4*(n-1)*a(n-2, m) + 2*(m+1)*a(n-1, m-1))/(n+m+2), a(n, m)=0 if n
G.f. for m-th column: c(x^2)*(x*c(x^2))^m, where c(x) = g.f. for Catalan numbers A000108.
G.f.: G(t,z) = c(z^2)/(1 - t*z*c(z^2)), where c(z) = (1 - sqrt(1-4*z))/(2*z) is the g.f. for the Catalan numbers (A000108). - Emeric Deutsch, Jun 16 2011
a(n, m) = a(n-1, m-1) + a(n-1, m+1) if n > 0 and m >= 0, a(0, 0)=1, a(0, m)=0 if m > 0, a(n, m)=0 if m < 0. - Henry Bottomley, Jan 25 2001
Sum_{k>=0} T(m,k)^2 = A000108(m). - Paul D. Hanna, Apr 23 2005
Sum_{k>=0} T(m, k)*T(n, k) = 0 if m+n is odd; Sum_{k>=0} T(m, k)*T(n, k) = A000108((m+n)/2) if m+n is even. - Philippe Deléham, May 26 2005
T(n,k)=sum{i=0..n, (-1)^(n-i)*C(n,i)*sum{j=0..i, C(i,j)*(C(i-j,j+k)-C(i-j,j+k+2))}}; Column k has e.g.f. BesselI(k,2x)-BesselI(k+2,2x). - Paul Barry, Feb 16 2006
Sum_{k=0..n} T(n,k)*(k+1) = 2^n. - Philippe Deléham, Mar 22 2007
Sum_{j>=0} T(n,j)*binomial(j,k) = A054336(n,k). - Philippe Deléham, Mar 30 2007
T(2*n+1,2*k+1) = A039598(n,k), T(2*n,2*k) = A039599(n,k). - Philippe Deléham, Apr 16 2007
Sum_{k=0..n} T(n,k)^x = A000027(n+1), A001405(n), A000108(n), A003161(n), A129123(n) for x = 0,1,2,3,4 respectively. - Philippe Deléham, Nov 22 2009
Sum_{k=0..n} T(n,k)*x^k = A126930(n), A126120(n), A001405(n), A054341(n), A126931(n) for x = -1, 0, 1, 2, 3 respectively. - Philippe Deléham, Nov 28 2009
Sum_{k=0..n} T(n,k)*A000045(k+1) = A098615(n). - Philippe Deléham, Feb 03 2012
Recurrence for row polynomials C(n, x) := Sum_{m=0..n} a(n, m)*x^m = x*Sum_{k=0..n} Chat(k)*C(n-1-k, x), n >= 0, with C(-1, 1/x) = 1/x and Chat(k) = A000108(k/2) if n is even and 0 otherwise. From the o.g.f. of the row polynomials: G(z; x) := Sum_{n >= 0} C(n, x)*z^n = c(z^2)*(1 + x*z*G(z, x)), with the o.g.f. c of A000108. - Ahmet Zahid KÜÇÜK and Wolfdieter Lang, Aug 23 2015
The Boas-Buck recurrence (see a comment above) for the sequence of column m is: a(n, m) = ((m+1)/(n-m))*Sum_{j=0..n-1-m} (1/2)*(1 - (-1)^j)*binomial(j+1, (j+1)/2)* a(n-1-j, k), for n > m >= 0 and input a(m, m) = 1. - Wolfdieter Lang, Aug 11 2017
Sum_{m=1..n} a(n,m) = A037952(n). - R. J. Mathar, Sep 23 2021

Extensions

Edited by N. J. A. Sloane, Jan 29 2011

A045621 a(n) = 2^n - binomial(n, floor(n/2)).

Original entry on oeis.org

0, 1, 2, 5, 10, 22, 44, 93, 186, 386, 772, 1586, 3172, 6476, 12952, 26333, 52666, 106762, 213524, 431910, 863820, 1744436, 3488872, 7036530, 14073060, 28354132, 56708264, 114159428, 228318856, 459312152, 918624304, 1846943453, 3693886906
Offset: 0

Author

David M Bloom, Brooklyn College

Keywords

Comments

p(n) = a(n)/2^n is the probability that a majority of heads had occurred at some point after n flips of a fair coin. For example, after 3 flips of a coin, the probability is 5/8 that a majority of heads had occurred at some point. (First flip is heads, p=1/2, or sequence THH, p=1/8.) - Brian Galebach, May 14 2001
Hankel transform is (-1)^n*n. - Paul Barry, Jan 11 2007
Hankel transform of a(n+1) is A127630. - Paul Barry, Sep 01 2009
a(n) is the number of n-step walks on the number line that are positive at some point along the walk. - Benjamin Phillabaum, Mar 06 2011

Crossrefs

Programs

  • GAP
    List([0..35], n-> 2^n - Binomial(n, Int(n/2)) ); # G. C. Greubel, Jan 13 2020
  • Magma
    [2^n - Binomial(n, Floor(n/2)): n in [0..35]]; // Bruno Berselli, Mar 08 2011
    
  • Maple
    seq( 2^n -binomial(n,floor(n/2)), n=0..35); # G. C. Greubel, Jan 13 2020
  • Mathematica
    Table[2^n - Binomial[n, Floor[n/2]], {n, 0, 35}] (* Roger L. Bagula, Aug 26 2006 *)
  • PARI
    {a(n)=if(n<0, 0, 2^n -binomial(n, n\2))} /* Michael Somos, Oct 31 2006 */
    
  • Sage
    [2^n -binomial(n,floor(n/2)) for n in (0..35)] # G. C. Greubel, Jan 13 2020
    

Formula

a(n) = 2^n - A001405(n).
a(2*k) = 2*a(2*k-1), a(2*k+1) = 2*a(2*k) + Catalan(k).
a(n+1) = b(0)*b(n)+b(1)*b(n-1)+...+b(n)*b(0), b(k)=C(k, [ k/2 ]).
G.f.: c(x^2)*x/(1-2*x) where c(x) = g.f. for Catalan numbers A000108.
a(n) = A054336(n, 1) (second column of triangle).
E.g.f.: exp(2*x) - I_0(2*x) - I_1(2*x) where I_n(x) is n-th modified Bessel function as a function of x. - Benjamin Phillabaum, Mar 06 2011
a(2*n+1) = A000346(n); a(2*n) = A068551(n). - Emeric Deutsch, Nov 16 2003
a(n) = Sum_{k=0..n-1} binomial(n, floor(k/2)). - Paul Barry, Aug 05 2004
a(n+1) = 2*a(n) + Catalan(n/2)*(1+(-1)^n)/2. - Paul Barry, Aug 05 2004
a(n+1) = Sum_{k=0..floor(n/2)} 2^(n-2*k)*A000108(k). - Paul Barry, Sep 01 2009
(n+1)*a(n) +2*(-n-1)*a(n-1) +4*(-n+2)*a(n-2) +8*(n-2)*a(n-3) = 0. - R. J. Mathar, Dec 02 2012

Extensions

Edited by N. J. A. Sloane, Oct 08 2006
Adjustments to formulas (correcting offsets) from Michael Somos, Oct 31 2006

A054335 A convolution triangle of numbers based on A000984 (central binomial coefficients of even order).

Original entry on oeis.org

1, 2, 1, 6, 4, 1, 20, 16, 6, 1, 70, 64, 30, 8, 1, 252, 256, 140, 48, 10, 1, 924, 1024, 630, 256, 70, 12, 1, 3432, 4096, 2772, 1280, 420, 96, 14, 1, 12870, 16384, 12012, 6144, 2310, 640, 126, 16, 1, 48620, 65536, 51480, 28672, 12012, 3840, 924, 160, 18, 1
Offset: 0

Author

Wolfdieter Lang, Mar 13 2000

Keywords

Comments

In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Bell-subgroup of the Riordan-group. The g.f. for the row polynomials p(n,x) (increasing powers of x) is 1/(sqrt(1-4*z)-x*z).
Riordan array (1/sqrt(1-4*x),x/sqrt(1-4*x)). - Paul Barry, May 06 2009
The matrix inverse is apparently given by deleting the leftmost column from A206022. - R. J. Mathar, Mar 12 2013

Examples

			Triangle begins:
    1;
    2,    1;
    6,    4,   1;
   20,   16,   6,   1;
   70,   64,  30,   8,  1;
  252,  256, 140,  48, 10,  1;
  924, 1024, 630, 256, 70, 12, 1; ...
Fourth row polynomial (n=3): p(3,x) = 20 + 16*x + 6*x^2 + x^3.
From _Paul Barry_, May 06 2009: (Start)
Production matrix begins
    2,   1;
    2,   2,  1;
    0,   2,  2,  1;
   -2,   0,  2,  2,  1;
    0,  -2,  0,  2,  2,  1;
    4,   0, -2,  0,  2,  2, 1;
    0,   4,  0, -2,  0,  2, 2, 1;
  -10,   0,  4,  0, -2,  0, 2, 2, 1;
    0, -10,  0,  4,  0, -2, 0, 2, 2, 1; (End)
		

Crossrefs

Row sums: A026671.

Programs

  • GAP
    T:= function(n, k)
        if k mod 2=0 then return Binomial(2*n-k, n-Int(k/2))*Binomial(n-Int(k/2),Int(k/2))/Binomial(k,Int(k/2));
        else return 4^(n-k)*Binomial(n-Int((k-1)/2)-1, Int((k-1)/2));
        fi;
      end;
    Flat(List([0..10], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Jul 20 2019
  • Magma
    T:= func< n, k | (k mod 2) eq 0 select Binomial(2*n-k, n-Floor(k/2))* Binomial(n-Floor(k/2),Floor(k/2))/Binomial(k,Floor(k/2)) else 4^(n-k)*Binomial(n-Floor((k-1)/2)-1, Floor((k-1)/2)) >;
    [[T(n,k): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jul 20 2019
    
  • Maple
    A054335 := proc(n,k)
        if k <0 or k > n then
            0 ;
        elif type(k,odd) then
            kprime := floor(k/2) ;
            binomial(n-kprime-1,kprime)*4^(n-k) ;
        else
            kprime := k/2 ;
            binomial(2*n-k,n-kprime)*binomial(n-kprime,kprime)/binomial(k,kprime) ;
        end if;
    end proc: # R. J. Mathar, Mar 12 2013
    # Uses function PMatrix from A357368. Adds column 1,0,0,0,... to the left.
    PMatrix(10, n -> binomial(2*(n-1), n-1)); # Peter Luschny, Oct 19 2022
  • Mathematica
    Flatten[ CoefficientList[#1, x] & /@ CoefficientList[ Series[1/(Sqrt[1 - 4*z] - x*z), {z, 0, 9}], z]] (* or *)
    a[n_, k_?OddQ] := 4^(n-k)*Binomial[(2*n-k-1)/2, (k-1)/2]; a[n_, k_?EvenQ] := (Binomial[n-k/2, k/2]*Binomial[2*n-k, n-k/2])/Binomial[k, k/2]; Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 08 2011, updated Jan 16 2014 *)
  • PARI
    T(n, k) = if(k%2==0, binomial(2*n-k, n-k/2)*binomial(n-k/2,k/2)/binomial(k,k/2), 4^(n-k)*binomial(n-(k-1)/2-1, (k-1)/2));
    for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 20 2019
    
  • Sage
    def T(n, k):
        if (mod(k,2)==0): return binomial(2*n-k, n-k/2)*binomial(n-k/2,k/2)/binomial(k,k/2)
        else: return 4^(n-k)*binomial(n-(k-1)/2-1, (k-1)/2)
    [[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jul 20 2019
    

Formula

a(n, 2*k+1) = binomial(n-k-1, k)*4^(n-2*k-1), a(n, 2*k) = binomial(2*(n-k), n-k)*binomial(n-k, k)/binomial(2*k, k), k >= 0, n >= m >= 0; a(n, m) := 0 if n
Column recursion: a(n, m)=2*(2*n-m-1)*a(n-1, m)/(n-m), n>m >= 0, a(m, m) := 1.
G.f. for column m: cbie(x)*(x*cbie(x))^m, with cbie(x) := 1/sqrt(1-4*x).
G.f.: 1/(1-x*y-2*x/(1-x/(1-x/(1-x/(1-x/(1-... (continued fraction). - Paul Barry, May 06 2009
Sum_{k>=0} T(n,2*k)*(-1)^k*A000108(k) = A000108(n+1). - Philippe Deléham, Jan 30 2012
Sum_{k=0..floor(n/2)} T(n-k,n-2*k) = A098615(n). - Philippe Deléham, Feb 01 2012
T(n,k) = 4*T(n-1,k) + T(n-2,k-2) for k>=1. - Philippe Deléham, Feb 02 2012
Vertical recurrence: T(n,k) = 1*T(n-1,k-1) + 2*T(n-2,k-1) + 6*T(n-3,k-1) + 20*T(n-4,k-1) + ... for k >= 1 (the coefficients 1, 2, 6, 20, ... are the central binomial coefficients A000984). - Peter Bala, Oct 17 2015

A171488 Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A005773(n+1)= 1,2,5,13,35,96,267,...

Original entry on oeis.org

1, 2, 1, 5, 4, 1, 13, 14, 6, 1, 35, 46, 27, 8, 1, 96, 147, 107, 44, 10, 1, 267, 462, 396, 204, 65, 12, 1, 750, 1437, 1404, 858, 345, 90, 14, 1, 2123, 4438, 4835, 3388, 1625, 538, 119, 16, 1, 6046, 13637, 16305, 12802, 7072, 2805, 791, 152, 18, 1
Offset: 0

Author

Philippe Deléham, Dec 10 2009

Keywords

Comments

Equal to A064189*B = B*A054336 = B^(-1)*A035324, B = A007318.

Examples

			Triangle T(n,k) (0<=k<=n) begins:
   1;
   2,   1;
   5,   4,   1;
  13,  14,   6,  1;
  35,  46,  27,  8,  1;
  96, 147, 107, 44, 10, 1;
  ...
		

Crossrefs

Programs

  • Maxima
    T(n,k)=((k+1)*sum(binomial(2*j+k,j)*(-1)^j*3^(n-j-k)*binomial(n+1,j+k+1),j,0,n-k))/(n+1); /* Vladimir Kruchinin Sep 30 2020 */

Formula

Sum_{k, 0<=k<=n} T(n,k)*x^k = A005043(n), A001006(n), A005773(n+1), A059738(n) for x = -2, -1, 0, 1 respectively.
T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + sum_{i, i>=0} T(n-1,k+1+i)*(-1)^i. - Philippe Deléham, Feb 23 2012
T(n,k) = (k+1)*Sum_{j=0..n-k} C(2*j+k,j)*(-1)^j*3^(n-j-k)*C(n+1,j+k+1)/(n+1). - Vladimir Kruchinin Sep 30 2020

A171567 Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A168491.

Original entry on oeis.org

1, -1, 1, 2, -2, 1, -5, 5, -3, 1, 14, -14, 9, -4, 1, -42, 42, -28, 14, -5, 1, 132, -132, 90, -48, 20, -6, 1, -429, 429, -297, 165, -75, 27, -7, 1, 1430, -1430, 1001, -572, 275, -110, 35, -8, 1, -4862, 4862, -3432, 2002, -1001, 429, -154, 44, -9, 1
Offset: 0

Author

Philippe Deléham, Dec 11 2009

Keywords

Comments

Equal to B^(-2)*A054336, B = A007318. T(n,0)=(-1)^n*A000108(n). Unsigned version in A033184.

Examples

			Triangle begins : 1 ; -1,1 ; 2,-2,1 ; -5,5,-3,1 ; 14,-14,9,-4,1 ;...
		

Crossrefs

Formula

T(n,k) = (-1)^(n-k)*(k+1)*binomial(2n-k, n-k)/(n+1), 0<=k<=n; else 0.
T(n,k) = T(n-1,k-1) - T(n-1,k) + sum_{i, i>=0} T(n-1,k+1+i)*(-1)^i. - Philippe Deléham, Feb 23 2012

A154930 Inverse of Fibonacci convolution array A154929.

Original entry on oeis.org

1, -2, 1, 5, -4, 1, -15, 14, -6, 1, 51, -50, 27, -8, 1, -188, 187, -113, 44, -10, 1, 731, -730, 468, -212, 65, -12, 1, -2950, 2949, -1956, 970, -355, 90, -14, 1, 12235, -12234, 8291, -4356, 1785, -550, 119, -16, 1, -51822, 51821, -35643, 19474, -8612, 3021
Offset: 0

Author

Paul Barry, Jan 17 2009

Keywords

Comments

Alternating sign version of A104259. Row sums are (-1)^n*A033321. First column is (-1)^n*A007317.

Examples

			Triangle begins
1,
-2, 1,
5, -4, 1,
-15, 14, -6, 1,
51, -50, 27, -8, 1,
-188, 187, -113, 44, -10, 1,
731, -730, 468, -212, 65, -12, 1,
-2950, 2949, -1956, 970, -355, 90, -14, 1
Production array is
-2, 1,
1, -2, 1,
-1, 1, -2, 1,
1, -1, 1, -2, 1,
-1, 1, -1, 1, -2, 1,
1, -1, 1, -1, 1, -2, 1,
-1, 1, -1, 1, -1, 1, -2, 1
or ((1-x-x^2)/(1+x),x) beheaded.
		

Crossrefs

Formula

Riordan array ((1/(1+x))c(-x/(1+x)), (x/(1+x))c(x/(1+x))), c(x) the g.f. of A000108;
Riordan array ((sqrt(1+6x+5x^2)-x-1)/(2x(1+x)),(sqrt(1+6x+5x^2)-x-1)/ (2(1+x)));
Triangle T(n,k) = sum{j=0..n, (-1)^(n-k)*C(n,j)*C(2j-k,j-k)(k+1)/(j+1)}.
T(n,k) = T(n-1,k-1) -2*T(n-1,k) + Sum_{i, i>=0} T(n-1,k+1+i)*(-1)^i. - Philippe Deléham, Feb 23 2012

A181472 Riordan array ((1+x)/(1+2x+2x^2),x(1+x)/(1+2x+2x^2)).

Original entry on oeis.org

1, -1, 1, 0, -2, 1, 2, 1, -3, 1, -4, 4, 3, -4, 1, 4, -12, 5, 6, -5, 1, 0, 16, -24, 4, 10, -6, 1, -8, -4, 42, -39, 0, 15, -7, 1, 16, -32, -24, 88, -55, -8, 21, -8, 1, -16, 80, -72, -80, 159, -69, -21, 28, -9, 1, 0, -96, 240, -112, -200, 258, -77, -40, 36, -10, 1
Offset: 0

Author

Paul Barry, Oct 21 2010

Keywords

Comments

Inverse is A054336. Coefficient array for Faber polynomials (of second kind) defined by f(x)=x+1-sum{(-1)^k/x^k,k>=1}.
Subtriangle of the triangle given by (0, -1, 1, -2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. -Philippe Deléham, Feb 20 2013

Examples

			Triangle begins
1,
-1, 1,
0, -2, 1,
2, 1, -3, 1,
-4, 4, 3, -4, 1,
4, -12, 5, 6, -5, 1,
0, 16, -24, 4, 10, -6, 1,
-8, -4, 42, -39, 0, 15, -7, 1,
16, -32, -24, 88, -55, -8, 21, -8, 1
Production matrix is
-1, 1,
-1, -1, 1,
0, -1, -1, 1,
-1, 0, -1, -1, 1,
0, -1, 0, -1, -1, 1,
-2, 0, -1, 0, -1, -1, 1,
0, -2, 0, -1, 0, -1, -1, 1,
-5, 0, -2, 0, -1, 0, -1, -1, 1,
0, -5, 0, -2, 0, -1, 0, -1, -1, 1
-14, 0, -5, 0, -2, 0, -1, 0, -1, -1, 1
based on the aerated Catalan numbers.
Triangle (0, -1, 1, -2, 0, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins:
1
0, 1
0, -1, 1
0, 0, -2, 1
0, 2, 1, -3, 1
0, -4, 4, 3, -4, 1
0, 4, -12, 5, 6, -5, 1. -_Philippe Deléham_, Feb 20 2013
		

Formula

T(n,m)=sum(k=m..m,(-2)^(k-m)*binomial(k,n-k)*binomial(k-1,m-1)), n,m>0, [From Vladimir Kruchinin, Mar 09 2011]
T(n,k) = T(n-1,k-1) + T(n-2,k-1) -2*T(n-1,k) - 2*T(n-2,k), T(0,0) = T(1,1) = 1, T(1,0) = -1, T(n,k) = 0 if k<0 or if k>n. -Philippe Deléham, Feb 20 2013
G.f.: (-1-x)/(-1-2*x-2*x^2+x*y+x^2*y). - R. J. Mathar, Aug 12 2015

A054442 Second convolution of A001405 (central binomial numbers).

Original entry on oeis.org

1, 3, 9, 22, 54, 123, 281, 618, 1362, 2934, 6330, 13452, 28620, 60243, 126921, 265282, 554874, 1153506, 2399390, 4966740, 10286196, 21219038, 43790154, 90076452, 185353204, 380364108, 780786516, 1599015192, 3275589144
Offset: 0

Author

Wolfdieter Lang, Mar 27 2000

Keywords

Crossrefs

Formula

a(2*k)= -3*2^(2*k+1)+binomial(2*(k+1), k+1)*(4*k+7)/2, a(2*k+1)= -3*4^(k+1)+binomial(2*(k+2), k+2)*(2*k+5)/2, k >= 0.
a(n)= A054336(n+2, 2) (third column of convolution triangle). G.f.: (1/(1-x-x^2*c(x^2)))^3, with c(x) the g.f. for the Catalan numbers A000108.

A054443 Third convolution of A001405 (central binomial numbers).

Original entry on oeis.org

1, 4, 14, 40, 109, 276, 682, 1624, 3810, 8744, 19868, 44496, 98941, 217780, 476786, 1036024, 2241814, 4823160, 10342180, 22076080, 46994386, 99673224, 210923364, 445000560, 937051684, 1968204496, 4127285688, 8636324768, 18045851165, 37638105588, 78404375362
Offset: 0

Author

Wolfdieter Lang, Mar 27 2000

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(k);if(n<0, 0, k=n\2; if(n%2, (k+4)*4^(k+2)-(k+3)*binomial(2*(k+3),k+3), (2*k+7)*4^(k+1)-binomial(2*(k+2),k+2)*(4*k+9)/2 ))}

Formula

a(2*k) = (2*k+7)*4^(k+1)-binomial(2*(k+2), k+2)*(4*k+9)/2, a(2*k+1) = (k+4)*4^(k+2)-(k+3)*binomial(2*(k+3), k+3), k >= 0.
a(n) = A054336(n+3, 3) (fourth column of convolution triangle). G.f.: (1/(1-x-x^2*c(x^2)))^4, with c(x) the g.f. for the Catalan numbers A000108.
G.f.: (c(x/(2x-1))/(1-2x))^4. - Michael Somos, Jul 31 2005
Showing 1-10 of 12 results. Next