Original entry on oeis.org
1, 3, 10, 32, 101, 315, 975, 3001, 9199, 28109, 85680, 260650, 791663, 2401313, 7275738, 22024152, 66615351, 201349365, 608227698, 1836345996, 5541690723, 16716767709, 50408518791, 151954553565, 457926628077, 1379630558935, 4155518092780, 12513892232666, 37676692203405
Offset: 1
a(4) = 32 = (1, 3, 3, 1) dot (1, 2, 5, 10) = (1 + 6 + 15 + 10).
-
s[n_] := 2^n - Binomial[n, Floor[n/2]]; Table[Sum[Binomial[n, k]*s[k + 1], {k, 0, n}], {n, 0, 28}] (* Amiram Eldar, May 31 2025 *)
A000346
a(n) = 2^(2*n+1) - binomial(2*n+1, n+1).
Original entry on oeis.org
1, 5, 22, 93, 386, 1586, 6476, 26333, 106762, 431910, 1744436, 7036530, 28354132, 114159428, 459312152, 1846943453, 7423131482, 29822170718, 119766321572, 480832549478, 1929894318332, 7744043540348, 31067656725032, 124613686513778, 499744650202436
Offset: 0
G.f. = 1 + 5*x + 22*x^2 + 93*x^3 + 386*x^4 + 1586*x^5 + 6476*x^6 + ...
- T. Myers and L. Shapiro, Some applications of the sequence 1, 5, 22, 93, 386, ... to Dyck paths and ordered trees, Congressus Numerant., 204 (2010), 93-104.
- D. Phulara and L. W. Shapiro, Descendants in ordered trees with a marked vertex, Congressus Numerantium, 205 (2011), 121-128.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- R. Bacher, On generating series of complementary plane trees arXiv:math/0409050 [math.CO], 2004.
- Vijay Balasubramanian, Javier M. Magan, and Qingyue Wu, A Tale of Two Hungarians: Tridiagonalizing Random Matrices, arXiv:2208.08452 [hep-th], 2022.
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- E. A. Bender, E. R. Canfield and R. W. Robinson, The enumeration of maps on the torus and the projective plane, Canad. Math. Bull., 31 (1988), 257-271; see p. 270.
- D. E. Davenport, L. K. Pudwell, L. W. Shapiro and L. C. Woodson, The Boundary of Ordered Trees, 2014.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 185
- R. K. Guy, Letter to N. J. A. Sloane
- Toufik Mansour and José L. Ramirez, Enumerations of polyominoes determined by Fuss-Catalan words, Australas. J. Combin. 81 (3) (2021) 447-457, table 1.
- Mircea Merca, A Special Case of the Generalized Girard-Waring Formula, J. Integer Sequences, Vol. 15 (2012), Article 12.5.7. - From _N. J. A. Sloane_, Nov 25 2012
- D. Merlini, R. Sprugnoli and M. C. Verri, Waiting patterns for a printer, FUN with algorithm'01, Isola d'Elba, 2001.
- D. Merlini, R. Sprugnoli and M. C. Verri, The tennis ball problem, J. Combin. Theory, A 99 (2002), 307-344 (A_n for s=2).
- Vera Posch, Correlators in Matrix Models, Master Thesis, Uppsala Univ. (Sweden 2023). See p. 44.
- John Riordan, Letter to N. J. A. Sloane, Sep 26 1980 with notes on the 1973 Handbook of Integer Sequences. Note that the sequences are identified by their N-numbers, not their A-numbers.
- W. T. Tutte, On the enumeration of planar maps. Bull. Amer. Math. Soc. 74 1968 64-74.
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus, J. Comb. Thy B13 (1972), 122-141 and 192-218 (eq. 5, b=1).
- N. J. A. Sloane, Notes
Even bisection of
A294175 (without the first two terms).
The following relate to compositions of 2n with alternating sum k.
- The k > 0 case is counted by
A000302.
- The k <= 0 case is counted by
A000302.
- The k != 0 case is counted by
A000346 (this sequence).
- The k < 0 case is counted by
A008549.
- The k >= 0 case is counted by
A114121.
A086543 counts partitions with nonzero alternating sum (bisection:
A182616).
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse:
A344612).
A345197 counts compositions by length and alternating sum.
Cf.
A000070,
A001791,
A007318,
A025047,
A027306,
A032443,
A053754,
A120452,
A163493,
A239830,
A344611,
A345921.
-
[2^(2*n+1) - Binomial(2*n+1,n+1): n in [0..30]]; // Vincenzo Librandi, Jun 07 2011
-
seq(2^(2*n+1)-binomial(2*n,n)*(2*n+1)/(n+1), n=0..12); # Emanuele Munarini, Mar 16 2011
-
Table[2^(2n+1)-Binomial[2n,n](2n+1)/(n+1),{n,0,20}] (* Emanuele Munarini, Mar 16 2011 *)
a[ n_] := If[ n<-4, 0, (4^(n + 1) - Binomial[2 n + 2, n + 1]) / 2]; (* Michael Somos, Jan 25 2014 *)
-
makelist(2^(2*n+1)-binomial(2*n,n)*(2*n+1)/(n+1),n,0,12); /* Emanuele Munarini, Mar 16 2011 */
-
{a(n) = if( n<-4, 0, n++; (2^(2*n) - binomial(2*n, n)) / 2)}; /* Michael Somos, Jan 25 2014 */
A008549
Number of ways of choosing at most n-1 items from a set of size 2*n+1.
Original entry on oeis.org
0, 1, 6, 29, 130, 562, 2380, 9949, 41226, 169766, 695860, 2842226, 11576916, 47050564, 190876696, 773201629, 3128164186, 12642301534, 51046844836, 205954642534, 830382690556, 3345997029244, 13475470680616, 54244942336114, 218269673491780, 877940640368572
Offset: 0
a(2) = 6 because there are 6 ways to choose at most 1 item from a set of size 5: You can choose the empty set, or you can choose any of the five one-element sets.
G.f. = x + 6*x^2 + 29*x^3 + 130*x^4 + 562*x^5 + 2380*x^6 + 9949*x^7 + ...
- D. Phulara and L. W. Shapiro, Descendants in ordered trees with a marked vertex, Congressus Numerantium, 205 (2011), 121-128.
- Indranil Ghosh, Table of n, a(n) for n = 0..1500 (terms 0..200 from T. D. Noe)
- José Agapito, Ângela Mestre, Maria M. Torres, and Pasquale Petrullo, On One-Parameter Catalan Arrays, Journal of Integer Sequences, 18 (2015), Article 15.5.1.
- Octavio Arizmendi, Daniel Perales, and Josue Vazquez-Becerra, Finite Free Convolution: Infinitesimal Distributions, arXiv:c [math.PR], 2025. See p. 34.
- Jean Christophe Aval, Adrien Boussicault, Patxi Laborde-Zubieta, and Mathias Pétréolle, Generating series of Periodic Parallelogram polyominoes, arXiv:1612.03759, 2016.
- Roland Bacher, On generating series of complementary plane trees, arXiv:math/0409050 [math.CO], 2004.
- Vijay Balasubramanian, Javier M. Magan, and Qingyue Wu, A Tale of Two Hungarians: Tridiagonalizing Random Matrices, arXiv:2208.08452 [hep-th], 2022.
- Cyril Banderier, Analytic combinatorics of random walks and planar maps, Ph. D. Thesis, 2001. [Broken link]
- Adrien Boussicault and P. Laborde-Zubieta, Periodic Parallelogram Polyominoes, arXiv preprint arXiv:1611.03766 [math.CO], 2016.
- AJ Bu, Explicit Generating Functions for the Sum of the Areas Under Dyck and Motzkin Paths (and for Their Powers), arXiv:2310.17026 [math.CO], 2023.
- AJ Bu and Doron Zeilberger, Using Symbolic Computation to Explore Generalized Dyck Paths and Their Areas, arXiv:2305.09030 [math.CO], 2023.
- Alexander Burstein and Sergi Elizalde, Total occurrence statistics on restricted permutations, arXiv:1305.3177 [math.CO], 2013.
- Robin Chapman, Moments of Dyck paths, Discrete Math., 204 (1999), 113-117.
- Nicolle González, Pamela E. Harris, Gordon Rojas Kirby, Mariana Smit Vega Garcia, and Bridget Eileen Tenner, Pinnacle sets of signed permutations, arXiv:2301.02628 [math.CO], 2023.
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
- Niklas G. Johansson, Efficient Simulation of the Deutsch-Jozsa Algorithm, Master's Project, Department of Electrical Engineering & Department of Physics, Chemistry and Biology, Linkoping University, April, 2015.
- Miles Jones, Sergey Kitaev, and Jeffrey Remmel, Frame patterns in n-cycles, arXiv preprint arXiv:1311.3332 [math.CO], 2013.
- James A. Mingo and Josue Vazquez-Becerra, The Asymptotic Infinitesimal Distribution of a Real Wishart Random Matrix, arXiv:2112.15231 [math.PR], 2021.
- Henri Mühle, Symmetric Chain Decompositions and the Strong Sperner Property for Noncrossing Partition Lattices, arXiv:1509.06942v1 [math.CO], 2015.
- Ran Pan and Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
- Elisa Pergola, Two bijections for the area of Dyck paths, Discrete Math., 241 (2001), 435-447.
- Wen-jin Woan, Area of Catalan Paths, Discrete Math., 226 (2001), 439-444.
For integer compositions of 2*(n+1) with alternating sum k < 0 we have:
- The opposite (k > 0) version is
A000302.
- The weak (k <= 0) version is (also)
A000302.
- The reverse-alternating version is also
A008549 (this sequence).
- The complement (k >= 0) is counted by
A114121.
- The case of reversed integer partitions is
A344743(n+1).
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse:
A344612).
A316524 gives the alternating sum of prime indices (reverse:
A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A345197 counts compositions by length and alternating sum.
Cf.
A000070,
A001791,
A007318,
A025047,
A027306,
A032443,
A058622,
A120452,
A163493,
A239830,
A344611.
-
[4^n-Binomial(2*n+1, n): n in [0..30]]; // Vincenzo Librandi, Feb 04 2016
-
A008549:=n->4^n-binomial(2*n+1,n): seq(A008549(n), n=0..30);
-
Table[4^n-Binomial[2n+1,n],{n,0,30}] (* Harvey P. Dale, May 11 2011 *)
a[ n_] := If[ n<-4, 0, 4^n - Binomial[2 n + 2, n + 1] / 2] (* Michael Somos, Jan 25 2014 *)
-
{a(n)=if(n<0, 0, 4^n - binomial(2*n+1, n))} /* Michael Somos Oct 31 2006 */
-
{a(n) = if( n<-4, 0, n++; (4^n / 2 - binomial(2*n, n)) / 2)} /* Michael Somos, Jan 25 2014 */
-
import math
def C(n,r):
f=math.factorial
return f(n)/f(r)/f(n-r)
def A008549(n):
return int((4**n)-C(2*n+1,n)) # Indranil Ghosh, Feb 18 2017
Better description from Dan Velleman (djvelleman(AT)amherst.edu), Dec 01 2000
A054336
A convolution triangle of numbers based on A001405 (central binomial coefficients).
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 6, 10, 9, 4, 1, 10, 22, 22, 14, 5, 1, 20, 44, 54, 40, 20, 6, 1, 35, 93, 123, 109, 65, 27, 7, 1, 70, 186, 281, 276, 195, 98, 35, 8, 1, 126, 386, 618, 682, 541, 321, 140, 44, 9, 1, 252, 772, 1362, 1624, 1440, 966, 497, 192, 54, 10, 1
Offset: 0
Fourth row polynomial (n=3): p(3,x)= 3 + 5*x + 3*x^2 + x^3.
From _Paul Barry_, Oct 21 2010: (Start)
Triangle begins
1;
1, 1;
2, 2, 1;
3, 5, 3, 1;
6, 10, 9, 4, 1;
10, 22, 22, 14, 5, 1;
20, 44, 54, 40, 20, 6, 1;
35, 93, 123, 109, 65, 27, 7, 1;
Production matrix is
1, 1;
1, 1, 1;
-1, 1, 1, 1;
1, -1, 1, 1, 1;
-1, 1, -1, 1, 1, 1;
1, -1, 1, -1, 1, 1, 1;
-1, 1, -1, 1, -1, 1, 1, 1;
1, -1, 1, -1, 1, -1, 1, 1, 1;
-1, 1, -1, 1, -1, 1, -1, 1, 1, 1; (End)
-
A053121:= function(n,k)
if ((n-k+1) mod 2)=0 then return 0;
else return (k+1)*Binomial(n+1, Int((n-k)/2))/(n+1);
fi;
end;
T:= function(n,k)
return Sum([k..n], j-> Binomial(j,k)*A053121(n,j));
end;
Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Jul 21 2019
-
A053121:= func< n,k | ((n-k+1) mod 2) eq 0 select 0 else (k+1)*Binomial(n+1, Floor((n-k)/2))/(n+1) >;
T:= func< n,k | (&+[Binomial(j,k)*A053121(n,j): j in [k..n]]) >;
[T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jul 21 2019
-
c[n_, j_] /; n < j || OddQ[n - j] = 0; c[n_, j_] = (j + 1) Binomial[n + 1, (n - j)/2]/(n + 1); t[n_, k_] := Sum[c[n, j]*Binomial[j, k], {j, 0, n}]; Flatten[Table[t[n, k], {n, 0, 10}, {k, 0, n}]][[;; 66]] (* Jean-François Alcover, Jul 13 2011, after Philippe Deléham *)
-
A053121(n,k) = if((n-k+1)%2==0, 0, (k+1)*binomial(n+1, (n-k)\2)/(n+1) );
T(n,k) = sum(j=k,n, A053121(n,j)*binomial(j,k));
for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 21 2019
-
def A053121(n, k):
if (n-k+1) % 2==0: return 0
else: return (k+1)*binomial(n+1, ((n-k)//2))/(n+1)
def T(n,k): return sum(binomial(j,k)*A053121(n,j) for j in (k..n))
[[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jul 21 2019
A068551
a(n) = 4^n - binomial(2*n,n).
Original entry on oeis.org
0, 2, 10, 44, 186, 772, 3172, 12952, 52666, 213524, 863820, 3488872, 14073060, 56708264, 228318856, 918624304, 3693886906, 14846262964, 59644341436, 239532643144, 961665098956, 3859788636664, 15488087080696, 62135313450064
Offset: 0
- H. W. Gould, Combinatorial Identities, Morgantown, WV, 1972. p. 32.
- Hojoo Lee, Posting to Number Theory List, Feb 18 2002.
- V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.
- Vincenzo Librandi, Table of n, a(n) for n = 0..175
- Dennis E. Davenport, Lara K. Pudwell, Louis W. Shapiro, and Leon C. Woodson, The Boundary of Ordered Trees, Journal of Integer Sequences, Vol. 18 (2015), Article 15.5.8.
- Nicolle González, Pamela E. Harris, Gordon Rojas Kirby, Mariana Smit Vega Garcia, and Bridget Eileen Tenner, Pinnacle sets of signed permutations, arXiv:2301.02628 [math.CO], 2023.
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- Marko R. Riedel, Average depth of a leaf in a binary tree, Math.Stackexchange.com.
- V. A. Liskovets and T. R. Walsh, Counting unrooted maps on the plane, Advances in Applied Math., 36(4) (2006), 364-387.
-
[4^n - Binomial(2*n,n): n in [0..35]]; // Vincenzo Librandi, Jun 07 2011
-
A068551:=n->4^n - binomial(2*n,n): seq(A068551(n), n=0..30); # Wesley Ivan Hurt, Mar 22 2014
-
nn=20;c=(1-(1-4x)^(1/2))/(2x); D[CoefficientList[ Series[ 1/(1-2y x c), {x,0,nn}], x], y]/.y->1 (* Geoffrey Critzer, Jan 30 2012 *)
-
a(n)=if(n<0,0,4^n-binomial(2*n,n))
-
x='x+O('x^100); concat(0, Vec(1/(1-4*x)-1/sqrt(1-4*x))) \\ Altug Alkan, Dec 29 2015
A127630
Expansion of (1+x-x^2-x^3)/(1+x^2)^2.
Original entry on oeis.org
1, 1, -3, -3, 5, 5, -7, -7, 9, 9, -11, -11, 13, 13, -15, -15, 17, 17, -19, -19, 21, 21, -23, -23, 25, 25, -27, -27, 29, 29, -31, -31, 33, 33, -35, -35, 37, 37, -39, -39, 41, 41, -43, -43, 45, 45, -47, -47, 49, 49, -51, -51, 53, 53, -55, -55
Offset: 0
-
CoefficientList[Series[(1+x-x^2-x^3)/(1+x^2)^2,{x,0,100}],x] (* or *) LinearRecurrence[{0,-2,0,-1},{1,1,-3,-3},100] (* Harvey P. Dale, Nov 18 2020 *)
A191391
Number of horizontal segments in all dispersed Dyck paths of length n (i.e., in all Motzkin paths of length n with no (1,0)-steps at positive heights; a horizontal segment is a maximal sequence of consecutive (1,0)-steps).
Original entry on oeis.org
0, 1, 1, 3, 5, 12, 22, 49, 93, 200, 386, 814, 1586, 3304, 6476, 13381, 26333, 54096, 106762, 218386, 431910, 880616, 1744436, 3547658, 7036530, 14281072, 28354132, 57451164, 114159428, 230993296, 459312152, 928319149, 1846943453, 3729244576, 7423131482, 14975907754
Offset: 0
a(4)=5 because in (HHHH), (HH)UD, (H)UD(H), UD(HH), UDUD, and UUDD we have a total of 1+1+2+1+0+0=5 horizontal segments (shown between parentheses).
-
g := 4*z*(1-z)/(1-2*z+sqrt(1-4*z^2))^2: gser := series(g, z = 0, 40): seq(coeff(gser, z, n), n = 0 .. 35);
A307768
Number of n-step random walks on a line starting from the origin and returning to it at least once.
Original entry on oeis.org
0, 0, 2, 4, 10, 20, 44, 88, 186, 372, 772, 1544, 3172, 6344, 12952, 25904, 52666, 105332, 213524, 427048, 863820, 1727640, 3488872, 6977744, 14073060, 28146120, 56708264, 113416528, 228318856, 456637712, 918624304, 1837248608, 3693886906, 7387773812, 14846262964, 29692525928
Offset: 0
The a(3)=4 three-step walks returning to 0 are [0, -1, 0, -1], [0, -1, 0, 1], [0, 1, 0, -1], [0, 1, 0, 1].
The a(4)=10 three-step walks returning to 0 are [0, -1, -2, -1, 0], [0, -1, 0, -1, -2], [0, -1, 0, -1, 0], [0, -1, 0, 1, 0], [0, -1, 0, 1, 2], [0, 1, 0, -1, -2], [0, 1, 0, -1, 0], [0, 1, 0, 1, 0], [0, 1, 0, 1, 2], [0, 1, 2, 1, 0].
-
b:=n->piecewise(n mod 2 = 0,binomial(n,n/2),2*binomial(n-1,(n-1)/2)):
seq(2^n-b(n),n=0..20);
# second program:
A307768 := series(exp(2*x) - int((1/x + 2)*BesselI(1,2*x),x) - BesselI(1,2*x), x = 0, 36): seq(n!*coeff(A307768, x, n), n = 0 .. 35); # Mélika Tebni, Jun 19 2024
-
a[n_] := If[n == 0, 0, 2^n - 2*Binomial[n-1, Floor[(n-1)/2]]];
Array[a, 36, 0] (* Jean-François Alcover, May 05 2019 *)
A330796
a(n) = Sum_{k=0..n} binomial(n, k)*(2^k - binomial(k, floor(k/2))).
Original entry on oeis.org
0, 1, 4, 14, 46, 147, 462, 1437, 4438, 13637, 41746, 127426, 388076, 1179739, 3581052, 10856790, 32880942, 99496293, 300845658, 909073356, 2745419352, 8287110075, 25003877784, 75412396575, 227366950140, 685293578217, 2064924137152, 6220442229932, 18734334462598
Offset: 0
-
m:=40;
R:=PowerSeriesRing(Rationals(), m+2);
A330796:= func< n | Coefficient(R!( (1-x-Sqrt(1-3*x)*Sqrt(1+x))/(2*x*(1-3*x)) ), n) >;
[A330796(n): n in [0..m]]; // G. C. Greubel, Sep 14 2023
-
gf := exp(x)*(exp(2*x) - BesselI(0,2*x) - BesselI(1,2*x)):
ser := series(gf, x, 32): seq(n!*coeff(ser, x, n), n=0..28);
# Alternative:
a := proc(n) option remember; if n < 3 then return n^2 fi;
((18-9*n)*a(n-3) - (3*n+3)*a(n-2) + (5*n+2)*a(n-1))/(n+1) end:
seq(a(n), n=0..28);
# Or:
a := n -> add(binomial(n, k)*(2^k - binomial(k, floor(k/2))), k=0..n):
seq(a(n), n=0..28);
-
a[n_]:= Sum[k Binomial[n,k] Hypergeometric2F1[(k-n)/2, (k-n+1)/2, k+2, 4], {k,0,n}]; Table[a[n], {n,0,30}] (* Peter Luschny, May 24 2021 *)
(* Second program *)
A330796[n_]:= Coefficient[Series[(1-x-Sqrt[1-3*x]*Sqrt[1+x])/(2*x*(1- 3*x)), {x,0,50}], x, n];
Table[A330796[n], {n,0,30}] (* G. C. Greubel, Sep 14 2023 *)
-
a(n):=(2*sum((-1)^j*binomial(2*j+1,j)*3^(n-j-1)*binomial(n+1,j+2),j,0,n-1))/(n+1); /* Vladimir Kruchinin, Sep 30 2020 */
-
m=40
P. = PowerSeriesRing(ZZ, m+2)
def A330796(n): return P( (1-x-sqrt(1-3*x)*sqrt(1+x))/(2*x*(1-3*x)) ).list()[n]
[A330796(n) for n in range(m+1)] # G. C. Greubel, Sep 14 2023
A054442
Second convolution of A001405 (central binomial numbers).
Original entry on oeis.org
1, 3, 9, 22, 54, 123, 281, 618, 1362, 2934, 6330, 13452, 28620, 60243, 126921, 265282, 554874, 1153506, 2399390, 4966740, 10286196, 21219038, 43790154, 90076452, 185353204, 380364108, 780786516, 1599015192, 3275589144
Offset: 0
Showing 1-10 of 12 results.
Comments