cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A026770 a(n) = T(2n,n), T given by A026769.

Original entry on oeis.org

1, 2, 7, 28, 120, 538, 2493, 11854, 57558, 284392, 1426038, 7241356, 37173304, 192638992, 1006564439, 5297715628, 28061959428, 149491856978, 800425486692, 4305263668514, 23251846197766, 126044501870378, 685569373724964, 3740339567665558, 20463965229643218, 112250484320225118
Offset: 0

Views

Author

Keywords

Comments

Number of lattice paths from (0,0) to (n,n) with steps (0,1), (1,0) and, when below the diagonal, (1,1). - Alois P. Heinz, Sep 14 2016

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 2/(x + Sqrt(1-4*x) + Sqrt(1-6*x+x^2)) )); // G. C. Greubel, Nov 01 2019
    
  • Maple
    seq(coeff(series(2/(x + sqrt(1-4*x) + sqrt(1-6*x+x^2)), x, n+1), x, n), n = 0..30); # G. C. Greubel, Nov 01 2019
  • Mathematica
    T[n_, k_] := T[n, k] = Which[k==0 || k==n, 1, n==2 && k==1, 2, k<=(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], True, T[n-1, k-1] + T[n-1, k]];
    a[n_] := T[2n, n];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 24 2019 *)
  • PARI
    { C = (1-sqrt(1-4*x+O(x^51)))/2/x; S = (1-x-sqrt(1-6*x+x^2 +O(x^51)))/2/x; Vec(1/(1-x*(C+S))) } /* Max Alekseyev, Dec 02 2015 */
    
  • Sage
    def A026770_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 2/(x + sqrt(1-4*x) + sqrt(1-6*x+x^2)) ).list()
    A026770_list(30) # G. C. Greubel, Nov 01 2019

Formula

O.g.f.: 1/(1-x*(C(x)+S(x))), where C(x)=(1-sqrt(1-4x))/(2*x) is o.g.f. for A000108 and S(x)=(1-x-sqrt(1-6*x+x^2))/(2*x) is o.g.f. for A006318. - Max Alekseyev, Dec 02 2015

A369627 Expansion of 1/(1 - x^2/(1-9*x)^(1/3)).

Original entry on oeis.org

1, 0, 1, 3, 19, 132, 991, 7740, 62020, 505857, 4180132, 34889514, 293518072, 2485191753, 21153817090, 180865139538, 1552289627872, 13366436688402, 115425148203235, 999256943147094, 8670047414816233, 75375298322580081, 656465004512563546
Offset: 0

Views

Author

Seiichi Manyama, Feb 06 2024

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1 - x^2/(1-9*x)^(1/3)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 19 2024 *)
    Flatten[{{1, 0, 1, 3, 19, 132}, RecurrenceTable[{9 (-12 + n) (-19 + 3 n) (-14 + 3 n) a[-8 + n] - 6 (-628 + 368 n - 63 n^2 + 3 n^3) a[-7 + n] + (-13 + n) (-4 + n) (-2 + n) a[-6 + n] + 81 (-12 + n) (-19 + 3 n) (-14 + 3 n) a[-3 + n] - 9 (-6960 + 3662 n - 585 n^2 + 27 n^3) a[-2 + n] + 3 (-14 + 3 n) (112 - 47 n + 3 n^2) a[-1 + n] - (-13 + n) (-4 + n) (-2 + n) a[n] == 0, a[6] == 991, a[7] == 7740, a[8] == 62020, a[9] == 505857, a[10] == 4180132, a[11] == 34889514, a[12] == 293518072, a[13] == 2485191753}, a, {n, 6, 20}]}] (* Vaclav Kotesovec, Feb 19 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(1-x^2/(1-9*x)^(1/3)))

Formula

a(n) = Sum_{k=0..floor(n/2)} 9^(n-2*k) * binomial(n-1-5*k/3,n-2*k).
a(n) ~ (r-9)^(4/3) * r^(5/3) * r^n / (2*r-15), where r = 9.0000169349284790514638157821699098461789951085871459872133... = is the largest real root of the equation r^5*(r-9) = 1. - Vaclav Kotesovec, Feb 19 2024
Showing 1-2 of 2 results.