A381009 Ordered areas of the Pythagorean triangles defined by a = 2^(4n) + 2^(2n+1), b = 2^(4n) - 2^(4n-2) - 2^(2n) - 1, c = 2^(4n) + 2^(4n-2) + 2^(2n) + 1.
84, 25200, 6350784, 1614708480, 412583721984, 105570270965760, 27022696873181184, 6917599389942743040, 1770891934572664848384, 453347470584212823736320, 116056897129722086198083584, 29710562123440325102508441600, 7605903676927233379495034486784, 1947111326786263531071061496954880
Offset: 1
Links
- Paolo Xausa, Table of n, a(n) for n = 1..400
- John D. Cook, Sparse binary Pythagorean triples (2025).
- H. S. Uhler, A Colossal Primitive Pythagorean Triangle, The American Mathematical Monthly, Vol. 57, No. 5 (May, 1950), pp. 331-332.
- Wikipedia, Pythagorean triple.
- Index entries for linear recurrences with constant coefficients, signature (340,-22848,348160,-1048576).
Crossrefs
Programs
-
Magma
[(2^(4*n) + 2^(2*n+1)) * (2^(4*n) - 2^(4*n-2) - 2^(2*n) - 1) / 2: n in [1..20]];
-
Mathematica
A381009[n_] := (3*# + 2)*(# + 2)*(# - 2)*2^(2*n - 3) & [4^n]; Array[A381009, 20] (* or *) LinearRecurrence[{340, -22848, 348160, -1048576}, {84, 25200, 6350784, 1614708480}, 20] (* Paolo Xausa, Feb 26 2025 *)
-
PARI
a(n) = (2^(4*n) + 2^(2*n+1)) * (2^(4*n) - 2^(4*n-2) - 2^(2*n) - 1) / 2
-
Python
def A381009(n): return (m:=1<<(n<<1)-1)*(m-1)*(m+1)*(3*m+1)<<1 # Chai Wah Wu, Feb 13 2025
Formula
a(n) = (2^(4n) + 2^(2n+1)) * (2^(4n) - 2^(4n-2) - 2^(2n) - 1) / 2.
G.f.: 12*(7 - 280*x - 24832*x^2 + 163840*x^3)/((1 - 4*x)*(1 - 16*x)*(1 - 64*x)*(1 - 256*x)). - Stefano Spezia, Feb 13 2025
Comments