A379783 For n >= 2, let b(n) = 1 if A379899(n) is 3 mod 4, 0 if A379899(n) is 1 mod 4; form the RUNS transform of {b(n), n >= 2}.
3, 7, 19, 42, 116, 292, 791, 2085, 5692, 15482, 42709, 118272, 329891, 923905, 2600458, 7344965, 20818129
Offset: 1
Examples
A379899 begins 2, 3, 7, 11, 5, 13, 17, 29, 37, 41, 53, 19, ..., and the {b(n), n >= 2} sequence begins 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, ..., whose RUNS transform is 3, 7, 19, 42, ...
Programs
-
Mathematica
nn = 2^20; c[_] := True; j = 3; q = 0; r = 1; s = 4; Monitor[Reap[ Do[m = j + s; While[k = SelectFirst[FactorInteger[m][[All, 1]], c]; !IntegerQ[k], m += s]; c[k] = False; j = k; If[# == r, q++, r = #; Sow[q]; q = 1] &[(Mod[k, 4] - 1)/2], {n, nn}] ][[-1, 1]], n] (* Michael De Vlieger, Jan 11 2025 *)
Extensions
a(10)-a(17) from Michael De Vlieger, Jan 11 2025
Comments