cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A379783 For n >= 2, let b(n) = 1 if A379899(n) is 3 mod 4, 0 if A379899(n) is 1 mod 4; form the RUNS transform of {b(n), n >= 2}.

Original entry on oeis.org

3, 7, 19, 42, 116, 292, 791, 2085, 5692, 15482, 42709, 118272, 329891, 923905, 2600458, 7344965, 20818129
Offset: 1

Views

Author

N. J. A. Sloane, Jan 11 2025

Keywords

Comments

If instead of A379899 we begin with the primes >= 2 in their natural order, the {b(n), n >= 2} sequence is 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, ..., with RUNS transform 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 3, 2, ..., (a dramatically different sequence, essentially A091237).

Examples

			A379899 begins 2, 3, 7, 11, 5, 13, 17, 29, 37, 41, 53, 19, ..., and the {b(n), n >= 2} sequence begins 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, ..., whose RUNS transform is 3, 7, 19, 42, ...
		

Crossrefs

See also A379652, A379785.

Programs

  • Mathematica
    nn = 2^20; c[_] := True; j = 3; q = 0; r = 1; s = 4;
    Monitor[Reap[
      Do[m = j + s;
        While[k = SelectFirst[FactorInteger[m][[All, 1]], c]; !IntegerQ[k],
          m += s];
        c[k] = False; j = k;
        If[# == r, q++, r = #; Sow[q]; q = 1] &[(Mod[k, 4] - 1)/2],
    {n, nn}] ][[-1, 1]], n] (* Michael De Vlieger, Jan 11 2025 *)

Extensions

a(10)-a(17) from Michael De Vlieger, Jan 11 2025

A380130 For n >= 2, let b(n) = 1 if A379784(n) is 3 mod 4, 0 if A379784(n) is 1 mod 4; form the RUNS transform of {b(n), n >= 2}.

Original entry on oeis.org

1, 6, 13, 34, 87, 229, 581, 1591, 4268, 11637, 31944, 88526, 246105, 688982, 1936129, 5463517, 15470445
Offset: 1

Views

Author

Robert C. Lyons, Jan 12 2025

Keywords

Examples

			A379784 begins 1, 5, 3, 7, 11, 19, 23, 31, 13, 17, 29, 37, ..., and the {b(n), n >= 2} sequence begins 0, 1, 1, 1, 1, 1, 1, 0, ..., whose RUNS transform is 1, 6, ...
		

Crossrefs

Programs

  • Mathematica
    nn = 2^19; c[_] := True; q = 0; j = r = 1; s = 4;
    Monitor[Rest@ Reap[Do[m = j + s;
      While[Set[k, SelectFirst[FactorInteger[m][[All, 1]], c]];
        ! IntegerQ[k], m += s];
      c[k] = False; j = k;
      If[# == r, q++, r = #; Sow[q]; q = 1] &[(Mod[k, 4] - 1)/2],
    {n, nn}] ][[-1, 1]], n] (* Michael De Vlieger, Jan 13 2025 *)
  • Python
    from sympy import primefactors
    prev_a379784 = 1
    prev_b = -1
    b_run = 0
    a379784_set = set([prev_a379784])
    seq = []
    max_seq_len = 17
    while len(seq) < max_seq_len:
        c = prev_a379784
        done = False
        while not done:
            c = c + 4
            factors = primefactors(c)
            for factor in factors:
                if factor not in a379784_set:
                    a379784_set.add(factor)
                    if factor % 4 == 3:
                        b = 1
                    else:
                        b = 0
                    if prev_b >= 0:
                        if b == prev_b:
                            b_run += 1
                        else:
                            seq.append(b_run)
                            b_run = 1
                    else:
                        b_run = 1
                    prev_b = b
                    prev_a379784 = factor
                    done = True
                    break
    print(seq)
Showing 1-2 of 2 results.