A381005
Ordered short legs of the Pythagorean triangles defined by a = 2^(4n) + 2^(2n+1), b = 2^(4n) - 2^(4n-2) - 2^(2n) - 1, c = 2^(4n) + 2^(4n-2) + 2^(2n) + 1.
Original entry on oeis.org
7, 175, 3007, 48895, 785407, 12578815, 201310207, 3221159935, 51539345407, 824632672255, 13194135339007, 211106215755775, 3377699653419007, 54043195260010495, 864691127381393407, 13835058050987196415, 221360928867334750207, 3541774862083514433535, 56668397794160864657407
Offset: 1
- Paolo Xausa, Table of n, a(n) for n = 1..800
- John D. Cook, Sparse binary Pythagorean triples (2025).
- H. S. Uhler, A Colossal Primitive Pythagorean Triangle, The American Mathematical Monthly, Vol. 57, No. 5 (May, 1950), pp. 331-332.
- Wikipedia, Pythagorean triple.
- Index entries for linear recurrences with constant coefficients, signature (21,-84,64).
-
[2^(4*n) - 2^(4*n-2) - 2^(2*n) - 1: n in [1..20]];
-
A381005[n_] := (3*# + 2)*(# - 2)/4 & [4^n]; Array[A381005, 20] (* or *)
LinearRecurrence[{21, -84, 64}, {7, 175, 3007}, 20] (* Paolo Xausa, Feb 26 2025 *)
-
a(n) = 2^(4*n) - 2^(4*n-2) - 2^(2*n) - 1
-
def A381005(n): return ((m:=1<<(n<<1)-1)-1)*(3*m+1) # Chai Wah Wu, Feb 13 2025
A381006
Ordered long legs of the Pythagorean triangles defined by a = 2^(4n) + 2^(2n+1), b = 2^(4n) - 2^(4n-2) - 2^(2n) - 1, c = 2^(4n) + 2^(4n-2) + 2^(2n) + 1.
Original entry on oeis.org
24, 288, 4224, 66048, 1050624, 16785408, 268468224, 4295098368, 68720001024, 1099513724928, 17592194433024, 281475010265088, 4503599761588224, 72057594574798848, 1152921506754330624, 18446744082299486208, 295147905213712564224, 4722366483007084167168
Offset: 1
- Paolo Xausa, Table of n, a(n) for n = 1..800
- John D. Cook, Sparse binary Pythagorean triples (2025).
- H. S. Uhler, A Colossal Primitive Pythagorean Triangle, The American Mathematical Monthly, Vol. 57, No. 5 (May, 1950), pp. 331-332.
- Wikipedia, Pythagorean triple.
- Index entries for linear recurrences with constant coefficients, signature (20,-64).
-
[2^(4*n) + 2^(2*n+1): n in [1..20]];
-
A381006[n_] := #*(# + 2) & [4^n]; Array[A381006, 20] (* or *)
LinearRecurrence[{20, -64}, {24, 288}, 20] (* Paolo Xausa, Feb 26 2025 *)
-
a(n) = 2^(4*n) + 2^(2*n+1)
-
def A381006(n): return (m:=1<<(n<<1))*(m+2) # Chai Wah Wu, Feb 13 2025
A381008
Ordered perimeters of the Pythagorean triangles defined by a = 2^(4n) + 2^(2n+1), b = 2^(4n) - 2^(4n-2) - 2^(2n) - 1, c = 2^(4n) + 2^(4n-2) + 2^(2n) + 1.
Original entry on oeis.org
56, 800, 12416, 197120, 3147776, 50339840, 805339136, 12885032960, 206158954496, 3298536980480, 52776566521856, 844424963686400, 13510799016329216, 216172782650654720, 3458764515968024576, 55340232229718589440, 885443715572418215936, 14167099448746374594560
Offset: 1
- Paolo Xausa, Table of n, a(n) for n = 1..800
- John D. Cook, Sparse binary Pythagorean triples (2025).
- H. S. Uhler, A Colossal Primitive Pythagorean Triangle, The American Mathematical Monthly, Vol. 57, No. 5 (May, 1950), pp. 331-332.
- Wikipedia, Pythagorean triple.
- Index entries for linear recurrences with constant coefficients, signature (20,-64).
-
[2^(4*n+1) + 2^(2*n+1) + 2^(4*n): n in [1..20]];
-
A381008[n_] := #*(3*# + 2) & [4^n]; Array[A381008, 20] (* or *)
LinearRecurrence[{20, -64}, {56, 800}, 20] (* Paolo Xausa, Feb 26 2025 *)
-
a(n) = 2^(4*n+1) + 2^(2*n+1) + 2^(4*n)
-
def A381008(n): return (m:=1<<(n<<1))*(2+3*m) # Chai Wah Wu, Feb 13 2025
A381009
Ordered areas of the Pythagorean triangles defined by a = 2^(4n) + 2^(2n+1), b = 2^(4n) - 2^(4n-2) - 2^(2n) - 1, c = 2^(4n) + 2^(4n-2) + 2^(2n) + 1.
Original entry on oeis.org
84, 25200, 6350784, 1614708480, 412583721984, 105570270965760, 27022696873181184, 6917599389942743040, 1770891934572664848384, 453347470584212823736320, 116056897129722086198083584, 29710562123440325102508441600, 7605903676927233379495034486784, 1947111326786263531071061496954880
Offset: 1
- Paolo Xausa, Table of n, a(n) for n = 1..400
- John D. Cook, Sparse binary Pythagorean triples (2025).
- H. S. Uhler, A Colossal Primitive Pythagorean Triangle, The American Mathematical Monthly, Vol. 57, No. 5 (May, 1950), pp. 331-332.
- Wikipedia, Pythagorean triple.
- Index entries for linear recurrences with constant coefficients, signature (340,-22848,348160,-1048576).
-
[(2^(4*n) + 2^(2*n+1)) * (2^(4*n) - 2^(4*n-2) - 2^(2*n) - 1) / 2: n in [1..20]];
-
A381009[n_] := (3*# + 2)*(# + 2)*(# - 2)*2^(2*n - 3) & [4^n]; Array[A381009, 20] (* or *)
LinearRecurrence[{340, -22848, 348160, -1048576}, {84, 25200, 6350784, 1614708480}, 20] (* Paolo Xausa, Feb 26 2025 *)
-
a(n) = (2^(4*n) + 2^(2*n+1)) * (2^(4*n) - 2^(4*n-2) - 2^(2*n) - 1) / 2
-
def A381009(n): return (m:=1<<(n<<1)-1)*(m-1)*(m+1)*(3*m+1)<<1 # Chai Wah Wu, Feb 13 2025
Showing 1-4 of 4 results.
Comments