A184119 Upper s(n)-Wythoff sequence, where s(n) = 2n - 1; complement of A136119.
2, 6, 9, 12, 16, 19, 23, 26, 30, 33, 36, 40, 43, 47, 50, 53, 57, 60, 64, 67, 70, 74, 77, 81, 84, 88, 91, 94, 98, 101, 105, 108, 111, 115, 118, 122, 125, 129, 132, 135, 139, 142, 146, 149, 152, 156, 159, 163, 166, 170, 173, 176, 180, 183, 187, 190, 193, 197, 200, 204, 207, 210, 214, 217, 221, 224, 228, 231, 234, 238, 241, 245, 248, 251, 255, 258, 262, 265, 269, 272, 275, 279, 282, 286, 289, 292, 296, 299, 303, 306, 309, 313, 316, 320, 323, 327, 330, 333, 337, 340
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..2000
- Aviezri S. Fraenkel, Iterated floor function, algebraic numbers, discrete chaos, Beatty subsequences, semigroups, Transactions of the American Mathematical Society 341.2 (1994): p. 640.
Programs
-
Magma
[Floor((2+Sqrt(2))*n-Sqrt(2)/2): n in [1..80]]; // Vincenzo Librandi, Jan 31 2017
-
Mathematica
k=2; r=1; mex:=First[Complement[Range[1, Max[#1]+1], #1]]&; s[n_]:=k*n-r; a[1]=1; b[n_]:=b[n]=s[n]+a[n]; a[n_]:=a[n]=mex[Flatten[Table[{a[i], b[i]},{i, 1, n-1}]]]; Table[s[n], {n, 30}] Table[a[n], {n, 100}] Table[b[n], {n, 100}] Table[(Floor[(2 + Sqrt[2]) n - Sqrt[2]/2]), {n, 100}] (* Vincenzo Librandi, Jan 31 2017 *)
Formula
a(n) = floor((2+sqrt(2))*n - sqrt(2)/2). - Michel Dekking, Jan 31 2017
Comments