A139419 a(n) = first term of the n-th run of consecutive numbers in A136120.
1, 3, 9, 15, 22, 36, 48, 69, 87, 116, 141, 167, 194, 222, 269, 308, 368, 419, 471, 524, 578, 633, 719, 791, 896, 986, 1077, 1169, 1262, 1356, 1451, 1591, 1710, 1876, 2020, 2213, 2383, 2604, 2801, 3051, 3276, 3502, 3729, 3957, 4186, 4416, 4647, 4879, 5112
Offset: 1
Keywords
Examples
A136120 starts 1, 3, 4, 5, 9, 10, 15, ..., so a(1) = 1, a(2) = 3, a(3) = 9.
Links
- Klaus Brockhaus, Table of n, a(n) for n=1..396
Programs
-
Mathematica
f[seq_] := Module[{s = seq, n1, n2}, n++; n1 = s[[n]] + n; If[n1 <= len, n2 = Min[n - 1 + 2*s[[n]], len]; len -= n2 - n1 + 1; Drop[s, {n1, n2}], s]]; n = 0; len = 5200; First /@Split[FixedPoint[f, Range[len]], #2 - #1 == 1 &] (* Jayanta Basu, Jun 15 2013 - using the Mma program in A136120 *)
Comments