cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A228044 Decimal expansion of sum of reciprocals, row 2 of the natural number array, A185787.

Original entry on oeis.org

1, 1, 2, 2, 2, 9, 4, 6, 0, 6, 6, 0, 3, 5, 0, 4, 3, 4, 3, 5, 4, 3, 4, 3, 2, 1, 8, 5, 9, 7, 9, 2, 5, 5, 9, 9, 2, 0, 2, 4, 3, 5, 0, 0, 8, 4, 2, 6, 9, 4, 6, 5, 5, 6, 7, 8, 8, 6, 4, 8, 1, 7, 3, 4, 3, 0, 8, 9, 9, 0, 3, 8, 1, 2, 1, 3, 5, 0, 3, 9, 6, 5, 8, 1, 0, 2
Offset: 1

Views

Author

Clark Kimberling, Aug 06 2013

Keywords

Comments

Let s(n) be the sum of reciprocals of the numbers in row n of the array T at A185787 given by T(n,k) = n + (n+k-2)*(n+k-1)/2, and let r = (2*Pi/sqrt(7))*tanh(Pi*sqrt(7)/2), as at A226985. Then s(1) = r, and s(2) to s(5) are given by A228044 to A228047.
Let c(k) be the sum of reciprocals of the numbers in column k of T. Then c(1) = 2; c(2) = 11/9, c(4) = 29/50, and c(3) is given by A228049. Let d(n) be the sum of reciprocals of the numbers in the main diagonal, (T(n,n)); then d(2) = (1/12)*Pi^2; d(3) = 1/2, and d(1) is given by A228048.
It appears that Mathematica gives closed-form exact expressions for s(n), c(n) for 1<=n<=20 and further. The same holds for diagonal sums dr(n,n+k), k>=0; and for diagonal sums and dc(n+k,n), k>=0. In any case, general terms for all four sequences can be represented using the digamma function. The representations imply that c(n) is rational if and only if n is a term of A000124, and that dr(n) is rational if and only if n has the form k^2 + 2 for k >= 1.

Examples

			1.12229460660350434354343218597925...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = Infinity; t[n_, k_] := t[n, k] = n + (n + k - 2) (n + k - 1)/2;
    u = N[Sum[1/t[2, k], {k, 1, Infinity}], 130]
    RealDigits[u, 10]
  • PARI
    sumnumrat(2/(n*(n+1)+4),1) \\ Charles R Greathouse IV, Feb 08 2023

Formula

Equals 1/3 + 1/5 + 1/8 + ...
Equals (1/30)*(-15 + 8*r*tanh(r)), where r = (Pi/2)*sqrt(15).

A228047 Decimal expansion of sum of reciprocals of row 5 of the natural number array, A185787.

Original entry on oeis.org

4, 2, 3, 5, 3, 9, 0, 9, 9, 6, 0, 8, 7, 0, 0, 1, 9, 6, 8, 3, 7, 6, 0, 7, 6, 8, 9, 9, 7, 4, 4, 2, 8, 9, 3, 7, 5, 4, 4, 3, 2, 2, 8, 8, 1, 8, 9, 4, 1, 7, 1, 1, 1, 0, 2, 1, 7, 5, 6, 0, 8, 4, 2, 8, 1, 3, 0, 9, 3, 4, 7, 8, 2, 4, 5, 8, 2, 6, 7, 1, 1, 7, 8, 2, 5, 9
Offset: 0

Views

Author

Clark Kimberling, Aug 06 2013

Keywords

Comments

See A228044.

Examples

			0.42353909960870019683760768997442893...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = Infinity; t[n_, k_] := t[n, k] = n + (n + k - 2) (n + k - 1)/2; u = N[Sum[1/t[5, k], {k, 1, Infinity}], 130]; RealDigits[u, 10]
  • PARI
    sumnumrat(1/(n*(n+7)/2+11),1) \\ Charles R Greathouse IV, Feb 08 2023

Formula

Equals 1/15 + 1/20 + 1/26 + ...
Equals (1/17160)*(-9997 + 1760*r*tanh(r)), where r = (Pi/2)*sqrt(39).

A228049 Decimal expansion of sum of reciprocals, column 3 of the natural number array, A185787.

Original entry on oeis.org

7, 9, 8, 4, 1, 0, 5, 5, 1, 0, 1, 6, 8, 7, 8, 0, 0, 3, 8, 6, 5, 2, 6, 6, 5, 1, 7, 5, 6, 1, 3, 2, 6, 5, 8, 1, 6, 6, 2, 7, 9, 3, 1, 6, 1, 9, 5, 4, 9, 8, 8, 5, 5, 7, 4, 1, 5, 2, 8, 6, 8, 7, 1, 8, 1, 1, 5, 7, 7, 8, 3, 0, 9, 5, 1, 4, 3, 1, 1, 1, 3, 3, 5, 4, 1, 9
Offset: 0

Views

Author

Clark Kimberling, Aug 06 2013

Keywords

Comments

Let s(n) be the sum of reciprocals of the numbers in row n of the array T at A185787 given by T(n,k) = n + (n+k-2)(n+k-1)/2, and let r = (2*pi/sqrt(7))*tanh(pi*sqrt(7)/2), as at A226985. Then s(1) = r, and s(2) to s(5) are given by A228044 to A228047.
Let c(n) be the sum of reciprocals of the numbers in column n of T. Then c(1) = 2; c(2) = 11/9, c(4) = 29/50, and c(3) is given by A228049. Let d(n) be the sum of reciprocals of the numbers in the main diagonal, (T(n,n)); then d(2) = (1/12)*(pi)^2; d(3) = 1/2, and d(1) is given by A228048.

Examples

			1/4 + 1/8 + 1/13 + ... = (1/34)(17 + 8r*tan(r)), where r = (pi/2)sqrt(17)
1/4 + 1/8 + 1/13 + ... = 0.79841055101687800386526651756132658166...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = Infinity; t[n_, k_] := t[n, k] = n + (n + k - 2) (n + k - 1)/2; u = N[Sum[1/t[n, 3], {n, 1, Infinity}], 130]; RealDigits[u, 10]
  • PARI
    sumnumrat(2/(n^2+5*n+2),1) \\ Charles R Greathouse IV, Feb 08 2023

A228045 Decimal expansion of sum of reciprocals of row 3 of the natural number array, A185787.

Original entry on oeis.org

7, 2, 6, 8, 0, 0, 6, 1, 9, 4, 6, 4, 9, 3, 5, 7, 7, 8, 1, 7, 9, 1, 4, 3, 0, 0, 7, 1, 9, 4, 4, 3, 5, 3, 8, 3, 9, 0, 8, 7, 7, 4, 6, 2, 7, 6, 3, 6, 0, 7, 7, 7, 3, 2, 3, 8, 9, 9, 7, 2, 6, 1, 3, 4, 0, 1, 3, 4, 6, 7, 2, 7, 2, 0, 1, 4, 8, 5, 9, 5, 2, 6, 4, 2, 6, 4
Offset: 0

Views

Author

Clark Kimberling, Aug 06 2013

Keywords

Comments

See A228044.

Examples

			0.726800619464935778179143007194435...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = Infinity; t[n_, k_] := t[n, k] = n + (n + k - 2) (n + k - 1)/2; u = N[Sum[1/t[3, k], {k, 1, Infinity}], 130]; RealDigits[u, 10]

Formula

Equals 1/6 + 1/9 + 1/13 + ...
Equals (1/276)*(-161 + 48*r*tanh(r)), where r = (Pi/2)*sqrt(23).

A228046 Decimal expansion of sum of reciprocals of row 4 of the natural number array, A185787.

Original entry on oeis.org

5, 3, 5, 6, 3, 6, 1, 9, 4, 7, 8, 0, 7, 8, 7, 2, 8, 4, 5, 5, 7, 8, 5, 0, 7, 4, 8, 6, 6, 4, 7, 1, 8, 6, 0, 7, 0, 0, 4, 3, 5, 4, 9, 4, 9, 6, 9, 1, 0, 7, 9, 6, 2, 2, 7, 7, 5, 5, 2, 0, 9, 8, 4, 9, 1, 8, 8, 7, 9, 3, 3, 8, 3, 3, 6, 0, 7, 1, 3, 2, 4, 9, 7, 9, 7, 8
Offset: 0

Views

Author

Clark Kimberling, Aug 06 2013

Keywords

Comments

See A228044.

Examples

			0.5356361947807872845578507486647...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = Infinity; t[n_, k_] := t[n, k] = n + (n + k - 2) (n + k - 1)/2; u = N[Sum[1/t[4, k], {k, 1, Infinity}], 130]; RealDigits[u, 10]

Formula

Equals 1/10 + 1/14 + 1/19 + ...
Equals (1/4340)*(-2573 + 560*r*tanh(r)), where r = (Pi/2)*sqrt(31).

A000027 The positive integers. Also called the natural numbers, the whole numbers or the counting numbers, but these terms are ambiguous.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Keywords

Comments

For some authors, the terms "natural numbers" and "counting numbers" include 0, i.e., refer to the nonnegative integers A001477; the term "whole numbers" frequently also designates the whole set of (signed) integers A001057.
a(n) is smallest positive integer which is consistent with sequence being monotonically increasing and satisfying a(a(n)) = n (cf. A007378).
Inverse Euler transform of A000219.
The rectangular array having A000027 as antidiagonals is the dispersion of the complement of the triangular numbers, A000217 (which triangularly form column 1 of this array). The array is also the transpose of A038722. - Clark Kimberling, Apr 05 2003
For nonzero x, define f(n) = floor(nx) - floor(n/x). Then f=A000027 if and only if x=tau or x=-tau. - Clark Kimberling, Jan 09 2005
Numbers of form (2^i)*k for odd k (i.e., n = A006519(n)*A000265(n)); thus n corresponds uniquely to an ordered pair (i,k) where i=A007814, k=A000265 (with A007814(2n)=A001511(n), A007814(2n+1)=0). - Lekraj Beedassy, Apr 22 2006
If the offset were changed to 0, we would have the following pattern: a(n)=binomial(n,0) + binomial(n,1) for the present sequence (number of regions in 1-space defined by n points), A000124 (number of regions in 2-space defined by n straight lines), A000125 (number of regions in 3-space defined by n planes), A000127 (number of regions in 4-space defined by n hyperplanes), A006261, A008859, A008860, A008861, A008862 and A008863, where the last six sequences are interpreted analogously and in each "... by n ..." clause an offset of 0 has been assumed, resulting in a(0)=1 for all of them, which corresponds to the case of not cutting with a hyperplane at all and therefore having one region. - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006
Define a number of points on a straight line to be in general arrangement when no two points coincide. Then these are the numbers of regions defined by n points in general arrangement on a straight line, when an offset of 0 is assumed. For instance, a(0)=1, since using no point at all leaves one region. The sequence satisfies the recursion a(n) = a(n-1) + 1. This has the following geometrical interpretation: Suppose there are already n-1 points in general arrangement, thus defining the maximal number of regions on a straight line obtainable by n-1 points, and now one more point is added in general arrangement. Then it will coincide with no other point and act as a dividing wall thereby creating one new region in addition to the a(n-1)=(n-1)+1=n regions already there, hence a(n)=a(n-1)+1. Cf. the comments on A000124 for an analogous interpretation. - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006
The sequence a(n)=n (for n=1,2,3) and a(n)=n+1 (for n=4,5,...) gives to the rank (minimal cardinality of a generating set) for the semigroup I_n\S_n, where I_n and S_n denote the symmetric inverse semigroup and symmetric group on [n]. - James East, May 03 2007
The sequence a(n)=n (for n=1,2), a(n)=n+1 (for n=3) and a(n)=n+2 (for n=4,5,...) gives the rank (minimal cardinality of a generating set) for the semigroup PT_n\T_n, where PT_n and T_n denote the partial transformation semigroup and transformation semigroup on [n]. - James East, May 03 2007
"God made the integers; all else is the work of man." This famous quotation is a translation of "Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk," spoken by Leopold Kronecker in a lecture at the Berliner Naturforscher-Versammlung in 1886. Possibly the first publication of the statement is in Heinrich Weber's "Leopold Kronecker," Jahresberichte D.M.V. 2 (1893) 5-31. - Clark Kimberling, Jul 07 2007
Binomial transform of A019590, inverse binomial transform of A001792. - Philippe Deléham, Oct 24 2007
Writing A000027 as N, perhaps the simplest one-to-one correspondence between N X N and N is this: f(m,n) = ((m+n)^2 - m - 3n + 2)/2. Its inverse is given by I(k)=(g,h), where g = k - J(J-1)/2, h = J + 1 - g, J = floor((1 + sqrt(8k - 7))/2). Thus I(1)=(1,1), I(2)=(1,2), I(3)=(2,1) and so on; the mapping I fills the first-quadrant lattice by successive antidiagonals. - Clark Kimberling, Sep 11 2008
a(n) is also the mean of the first n odd integers. - Ian Kent, Dec 23 2008
Equals INVERTi transform of A001906, the even-indexed Fibonacci numbers starting (1, 3, 8, 21, 55, ...). - Gary W. Adamson, Jun 05 2009
These are also the 2-rough numbers: positive integers that have no prime factors less than 2. - Michael B. Porter, Oct 08 2009
Totally multiplicative sequence with a(p) = p for prime p. Totally multiplicative sequence with a(p) = a(p-1) + 1 for prime p. - Jaroslav Krizek, Oct 18 2009
Triangle T(k,j) of natural numbers, read by rows, with T(k,j) = binomial(k,2) + j = (k^2-k)/2 + j where 1 <= j <= k. In other words, a(n) = n = binomial(k,2) + j where k is the largest integer such that binomial(k,2) < n and j = n - binomial(k,2). For example, T(4,1)=7, T(4,2)=8, T(4,3)=9, and T(4,4)=10. Note that T(n,n)=A000217(n), the n-th triangular number. - Dennis P. Walsh, Nov 19 2009
Hofstadter-Conway-like sequence (see A004001): a(n) = a(a(n-1)) + a(n-a(n-1)) with a(1) = 1, a(2) = 2. - Jaroslav Krizek, Dec 11 2009
a(n) is also the dimension of the irreducible representations of the Lie algebra sl(2). - Leonid Bedratyuk, Jan 04 2010
Floyd's triangle read by rows. - Paul Muljadi, Jan 25 2010
Number of numbers between k and 2k where k is an integer. - Giovanni Teofilatto, Mar 26 2010
Generated from a(2n) = r*a(n), a(2n+1) = a(n) + a(n+1), r = 2; in an infinite set, row 2 of the array shown in A178568. - Gary W. Adamson, May 29 2010
1/n = continued fraction [n]. Let barover[n] = [n,n,n,...] = 1/k. Then k - 1/k = n. Example: [2,2,2,...] = (sqrt(2) - 1) = 1/k, with k = (sqrt(2) + 1). Then 2 = k - 1/k. - Gary W. Adamson, Jul 15 2010
Number of n-digit numbers the binary expansion of which contains one run of 1's. - Vladimir Shevelev, Jul 30 2010
From Clark Kimberling, Jan 29 2011: (Start)
Let T denote the "natural number array A000027":
1 2 4 7 ...
3 5 8 12 ...
6 9 13 18 ...
10 14 19 25 ...
T(n,k) = n+(n+k-2)*(n+k-1)/2. See A185787 for a list of sequences based on T, such as rows, columns, diagonals, and sub-arrays. (End)
The Stern polynomial B(n,x) evaluated at x=2. See A125184. - T. D. Noe, Feb 28 2011
The denominator in the Maclaurin series of log(2), which is 1 - 1/2 + 1/3 - 1/4 + .... - Mohammad K. Azarian, Oct 13 2011
As a function of Bernoulli numbers B_n (cf. A027641: (1, -1/2, 1/6, 0, -1/30, 0, 1/42, ...)): let V = a variant of B_n changing the (-1/2) to (1/2). Then triangle A074909 (the beheaded Pascal's triangle) * [1, 1/2, 1/6, 0, -1/30, ...] = the vector [1, 2, 3, 4, 5, ...]. - Gary W. Adamson, Mar 05 2012
Number of partitions of 2n+1 into exactly two parts. - Wesley Ivan Hurt, Jul 15 2013
Integers n dividing u(n) = 2u(n-1) - u(n-2); u(0)=0, u(1)=1 (Lucas sequence A001477). - Thomas M. Bridge, Nov 03 2013
For this sequence, the generalized continued fraction a(1)+a(1)/(a(2)+a(2)/(a(3)+a(3)/(a(4)+...))), evaluates to 1/(e-2) = A194807. - Stanislav Sykora, Jan 20 2014
Engel expansion of e-1 (A091131 = 1.71828...). - Jaroslav Krizek, Jan 23 2014
a(n) is the number of permutations of length n simultaneously avoiding 213, 231 and 321 in the classical sense which are breadth-first search reading words of increasing unary-binary trees. For more details, see the entry for permutations avoiding 231 at A245898. - Manda Riehl, Aug 05 2014
a(n) is also the number of permutations simultaneously avoiding 213, 231 and 321 in the classical sense which can be realized as labels on an increasing strict binary tree with 2n-1 nodes. See A245904 for more information on increasing strict binary trees. - Manda Riehl, Aug 07 2014
a(n) = least k such that 2*Pi - Sum_{h=1..k} 1/(h^2 - h + 3/16) < 1/n. - Clark Kimberling, Sep 28 2014
a(n) = least k such that Pi^2/6 - Sum_{h=1..k} 1/h^2 < 1/n. - Clark Kimberling, Oct 02 2014
Determinants of the spiral knots S(2,k,(1)). a(k) = det(S(2,k,(1))). These knots are also the torus knots T(2,k). - Ryan Stees, Dec 15 2014
As a function, the restriction of the identity map on the nonnegative integers {0,1,2,3...}, A001477, to the positive integers {1,2,3,...}. - M. F. Hasler, Jan 18 2015
See also A131685(k) = smallest positive number m such that c(i) = m (i^1 + 1) (i^2 + 2) ... (i^k+ k) / k! takes integral values for all i>=0: For k=1, A131685(k)=1, which implies that this is a well defined integer sequence. - Alexander R. Povolotsky, Apr 24 2015
a(n) is the number of compositions of n+2 into n parts avoiding the part 2. - Milan Janjic, Jan 07 2016
Does not satisfy Benford's law [Berger-Hill, 2017] - N. J. A. Sloane, Feb 07 2017
Parametrization for the finite multisubsets of the positive integers, where, for p_j the j-th prime, n = Product_{j} p_j^(e_j) corresponds to the multiset containing e_j copies of j ('Heinz encoding' -- see A056239, A003963, A289506, A289507, A289508, A289509). - Christopher J. Smyth, Jul 31 2017
The arithmetic function v_1(n,1) as defined in A289197. - Robert Price, Aug 22 2017
For n >= 3, a(n)=n is the least area that can be obtained for an irregular octagon drawn in a square of n units side, whose sides are parallel to the axes, with 4 vertices that coincide with the 4 vertices of the square, and the 4 remaining vertices having integer coordinates. See Affaire de Logique link. - Michel Marcus, Apr 28 2018
a(n+1) is the order of rowmotion on a poset defined by a disjoint union of chains of length n. - Nick Mayers, Jun 08 2018
Number of 1's in n-th generation of 1-D Cellular Automata using Rules 50, 58, 114, 122, 178, 186, 206, 220, 238, 242, 250 or 252 in the Wolfram numbering scheme, started with a single 1. - Frank Hollstein, Mar 25 2019
(1, 2, 3, 4, 5, ...) is the fourth INVERT transform of (1, -2, 3, -4, 5, ...). - Gary W. Adamson, Jul 15 2019

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 1.
  • T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, 1990, page 25.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 22.
  • W. Fulton and J. Harris, Representation theory: a first course, (1991), page 149. [From Leonid Bedratyuk, Jan 04 2010]
  • I. S. Gradstein and I. M. Ryshik, Tables of series, products, and integrals, Volume 1, Verlag Harri Deutsch, 1981.
  • R. E. Schwartz, You Can Count on Monsters: The First 100 numbers and Their Characters, A. K. Peters and MAA, 2010.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A001477 = nonnegative numbers.
Partial sums of A000012.
Cf. A026081 = integers in reverse alphabetical order in U.S. English, A107322 = English name for number and its reverse have the same number of letters, A119796 = zero through ten in alphabetical order of English reverse spelling, A005589, etc. Cf. A185787 (includes a list of sequences based on the natural number array A000027).
Cf. Boustrophedon transforms: A000737, A231179;
Cf. A038722 (mirrored when seen as triangle), A056011 (boustrophedon).
Cf. A048993, A048994, A000110 (see the Feb 03 2015 formula).

Programs

Formula

a(2k+1) = A005408(k), k >= 0, a(2k) = A005843(k), k >= 1.
Multiplicative with a(p^e) = p^e. - David W. Wilson, Aug 01 2001
Another g.f.: Sum_{n>0} phi(n)*x^n/(1-x^n) (Apostol).
When seen as an array: T(k, n) = n+1 + (k+n)*(k+n+1)/2. Main diagonal is 2n*(n+1)+1 (A001844), antidiagonal sums are n*(n^2+1)/2 (A006003). - Ralf Stephan, Oct 17 2004
Dirichlet generating function: zeta(s-1). - Franklin T. Adams-Watters, Sep 11 2005
G.f.: x/(1-x)^2. E.g.f.: x*exp(x). a(n)=n. a(-n)=-a(n).
Series reversion of g.f. A(x) is x*C(-x)^2 where C(x) is the g.f. of A000108. - Michael Somos, Sep 04 2006
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 - v - 4*u*v. - Michael Somos, Oct 03 2006
Convolution of A000012 (the all-ones sequence) with itself. - Tanya Khovanova, Jun 22 2007
a(n) = 2*a(n-1)-a(n-2); a(1)=1, a(2)=2. a(n) = 1+a(n-1). - Philippe Deléham, Nov 03 2008
a(n) = A000720(A000040(n)). - Juri-Stepan Gerasimov, Nov 29 2009
a(n+1) = Sum_{k=0..n} A101950(n,k). - Philippe Deléham, Feb 10 2012
a(n) = Sum_{d | n} phi(d) = Sum_{d | n} A000010(d). - Jaroslav Krizek, Apr 20 2012
G.f.: x * Product_{j>=0} (1+x^(2^j))^2 = x * (1+2*x+x^2) * (1+2*x^2+x^4) * (1+2*x^4+x^8) * ... = x + 2x^2 + 3x^3 + ... . - Gary W. Adamson, Jun 26 2012
a(n) = det(binomial(i+1,j), 1 <= i,j <= n). - Mircea Merca, Apr 06 2013
E.g.f.: x*E(0), where E(k) = 1 + 1/(x - x^3/(x^2 + (k+1)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 03 2013
From Wolfdieter Lang, Oct 09 2013: (Start)
a(n) = Product_{k=1..n-1} 2*sin(Pi*k/n), n > 1.
a(n) = Product_{k=1..n-1} (2*sin(Pi*k/(2*n)))^2, n > 1.
These identities are used in the calculation of products of ratios of lengths of certain lines in a regular n-gon. For the first identity see the Gradstein-Ryshik reference, p. 62, 1.392 1., bringing the first factor there to the left hand side and taking the limit x -> 0 (L'Hôpital). The second line follows from the first one. Thanks to Seppo Mustonen who led me to consider n-gon lengths products. (End)
a(n) = Sum_{j=0..k} (-1)^(j-1)*j*binomial(n,j)*binomial(n-1+k-j,k-j), k>=0. - Mircea Merca, Jan 25 2014
a(n) = A052410(n)^A052409(n). - Reinhard Zumkeller, Apr 06 2014
a(n) = Sum_{k=1..n^2+2*n} 1/(sqrt(k)+sqrt(k+1)). - Pierre CAMI, Apr 25 2014
a(n) = floor(1/sin(1/n)) = floor(cot(1/(n+1))) = ceiling(cot(1/n)). - Clark Kimberling, Oct 08 2014
a(n) = floor(1/(log(n+1)-log(n))). - Thomas Ordowski, Oct 10 2014
a(k) = det(S(2,k,1)). - Ryan Stees, Dec 15 2014
a(n) = 1/(1/(n+1) + 1/(n+1)^2 + 1/(n+1)^3 + ...). - Pierre CAMI, Jan 22 2015
a(n) = Sum_{m=0..n-1} Stirling1(n-1,m)*Bell(m+1), for n >= 1. This corresponds to Bell(m+1) = Sum_{k=0..m} Stirling2(m, k)*(k+1), for m >= 0, from the fact that Stirling2*Stirling1 = identity matrix. See A048993, A048994 and A000110. - Wolfdieter Lang, Feb 03 2015
a(n) = Sum_{k=1..2n-1}(-1)^(k+1)*k*(2n-k). In addition, surprisingly, a(n) = Sum_{k=1..2n-1}(-1)^(k+1)*k^2*(2n-k)^2. - Charlie Marion, Jan 05 2016
G.f.: x/(1-x)^2 = (x * r(x) *r(x^3) * r(x^9) * r(x^27) * ...), where r(x) = (1 + x + x^2)^2 = (1 + 2x + 3x^2 + 2x^3 + x^4). - Gary W. Adamson, Jan 11 2017
a(n) = floor(1/(Pi/2-arctan(n))). - Clark Kimberling, Mar 11 2020
a(n) = Sum_{d|n} mu(n/d)*sigma(d). - Ridouane Oudra, Oct 03 2020
a(n) = Sum_{k=1..n} phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 09 2021
a(n) = S(n-1, 2), with the Chebyshev S-polynomials A049310. - Wolfdieter Lang, Mar 09 2023
From Peter Bala, Nov 02 2024: (Start)
For positive integer m, a(n) = (1/m)* Sum_{k = 1..2*m*n-1} (-1)^(k+1) * k * (2*m*n - k) = (1/m) * Sum_{k = 1..2*m*n-1} (-1)^(k+1) * k^2 * (2*m*n - k)^2 (the case m = 1 is given above).
a(n) = Sum_{k = 0..3*n} (-1)^(n+k+1) * k * binomial(3*n+k, 2*k). (End)

Extensions

Links edited by Daniel Forgues, Oct 07 2009.

A001477 The nonnegative integers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 0

Views

Author

Keywords

Comments

Although this is a list, and lists normally have offset 1, it seems better to make an exception in this case. - N. J. A. Sloane, Mar 13 2010
The subsequence 0,1,2,3,4 gives the known values of n such that 2^(2^n)+1 is a prime (see A019434, the Fermat primes). - N. J. A. Sloane, Jun 16 2010
Also: The identity map, defined on the set of nonnegative integers. The restriction to the positive integers yields the sequence A000027. - M. F. Hasler, Nov 20 2013
The number of partitions of 2n into exactly 2 parts. - Colin Barker, Mar 22 2015
The number of orbits of Aut(Z^7) as function of the infinity norm n of the representative lattice point of the orbit, when the cardinality of the orbit is equal to 8960 or 168.- Philippe A.J.G. Chevalier, Dec 29 2015
Partial sums give A000217. - Omar E. Pol, Jul 26 2018
First differences are A000012 (the "all 1's" sequence). - M. F. Hasler, May 30 2020
See A061579 for the transposed infinite square matrix, or triangle with rows reversed. - M. F. Hasler, Nov 09 2021
This is the unique sequence (a(n)) that satisfies the inequality a(n+1) > a(a(n)) for all n in N. This simple and surprising result comes from the 6th problem proposed by Bulgaria during the second day of the 19th IMO (1977) in Belgrade (see link and reference). - Bernard Schott, Jan 25 2023

Examples

			Triangular view:
   0
   1   2
   3   4   5
   6   7   8   9
  10  11  12  13  14
  15  16  17  18  19  20
  21  22  23  24  25  26  27
  28  29  30  31  32  33  34  35
  36  37  38  39  40  41  42  43  44
  45  46  47  48  49  50  51  52  53  54
		

References

  • Maurice Protat, Des Olympiades à l'Agrégation, suite vérifiant f(n+1) > f(f(n)), Problème 7, pp. 31-32, Ellipses, Paris 1997.

Crossrefs

Cf. A000027 (n>=1).
Cf. A000012 (first differences).
Partial sums of A057427. - Jeremy Gardiner, Sep 08 2002
Cf. A038608 (alternating signs), A001787 (binomial transform).
Cf. A055112.
Cf. Boustrophedon transforms: A231179, A000737.
Cf. A245422.
Number of orbits of Aut(Z^7) as function of the infinity norm A000579, A154286, A102860, A002412, A045943, A115067, A008586, A008585, A005843, A000217.
When written as an array, the rows/columns are A000217, A000124, A152948, A152950, A145018, A167499, A166136, A167487... and A000096, A034856, A055998, A046691, A052905, A055999... (with appropriate offsets); cf. analogous lists for A000027 in A185787.
Cf. A000290.
Cf. A061579 (transposed matrix / reversed triangle).

Programs

Formula

a(n) = n.
a(0) = 0, a(n) = a(n-1) + 1.
G.f.: x/(1-x)^2.
Multiplicative with a(p^e) = p^e. - David W. Wilson, Aug 01 2001
When seen as array: T(k, n) = n + (k+n)*(k+n+1)/2. Main diagonal is 2*n*(n+1) (A046092), antidiagonal sums are n*(n+1)*(n+2)/2 (A027480). - Ralf Stephan, Oct 17 2004
Dirichlet generating function: zeta(s-1). - Franklin T. Adams-Watters, Sep 11 2005
E.g.f.: x*e^x. - Franklin T. Adams-Watters, Sep 11 2005
a(0)=0, a(1)=1, a(n) = 2*a(n-1) - a(n-2). - Jaume Oliver Lafont, May 07 2008
Alternating partial sums give A001057 = A000217 - 2*(A008794). - Eric Desbiaux, Oct 28 2008
a(n) = 2*A080425(n) + 3*A008611(n-3), n>1. - Eric Desbiaux, Nov 15 2009
a(n) = A007966(n)*A007967(n). - Reinhard Zumkeller, Jun 18 2011
a(n) = Sum_{k>=0} A030308(n,k)*2^k. - Philippe Deléham, Oct 20 2011
a(n) = 2*A028242(n-1) + (-1)^n*A000034(n-1). - R. J. Mathar, Jul 20 2012
a(n+1) = det(C(i+1,j), 1 <= i, j <= n), where C(n,k) are binomial coefficients. - Mircea Merca, Apr 06 2013
a(n-1) = floor(n/e^(1/n)) for n > 0. - Richard R. Forberg, Jun 22 2013
a(n) = A000027(n) for all n>0.
a(n) = floor(cot(1/(n+1))). - Clark Kimberling, Oct 08 2014
a(0)=0, a(n>0) = 2*z(-1)^[( |z|/z + 3 )/2] + ( |z|/z - 1 )/2 for z = A130472(n>0); a 1 to 1 correspondence between integers and naturals. - Adriano Caroli, Mar 29 2015
G.f. as triangle: x*(1 + (x^2 - 5*x + 2)*y + x*(2*x - 1)*y^2)/((1 - x)^3*(1 - x*y)^3). - Stefano Spezia, Jul 22 2025

A380661 Rectangular array neg(i,j,1,2) read by descending antidiagonals: pos() and neg() denote the positive part and negative part of a determinant; see Comments.

Original entry on oeis.org

6, 20, 30, 56, 72, 90, 132, 156, 182, 210, 272, 306, 342, 380, 420, 506, 552, 600, 650, 702, 756, 870, 930, 992, 1056, 1122, 1190, 1260, 1406, 1482, 1560, 1640, 1722, 1806, 1892, 1980, 2162, 2256, 2352, 2450, 2550, 2652, 2756, 2862, 2970, 3192, 3306, 3422
Offset: 1

Views

Author

Clark Kimberling, Feb 04 2025

Keywords

Comments

Suppose that (m(i,j)) is a rectangular array of infinitely many rows and infinitely many columns. For integers s>=1 and n>=1, let M(i,j,s,n) be the nXn matrix (m(i+h*s,j+k*s)), where h=0..n-1, k=0..n-1.
Let D(i,j,s,n) and P(i,j,s,n) denote the determinant and permanent of M(i,j,s,n), respectively. Define arrays pos(i,j,s,n) and neg(i,j,s,n) by pos(i,j,s,n) = (P(i,j,s,n)+D(i,j,s,n))/2 and neg(i,j,s,n) = (P(i,j,s,n)-D(i,j,s,n))/2, so that P(i,j,s,n) = pos(i,j,s,n)+neg(i,j,s,n) and D(i,j,s,n) = pos(i,j,s,n)-neg(i,j,s,n).
A definition of determinant of an nXn matrix (a(i,j)) is the sum of the products (-1)^p(u) a(1,j(1))*a(2,j(2))*...*a(n,j(n)) over the n! permutations u = (j(1),j(2),...,j(n)) of (1,2,...,n), where p(u) is the parity of u; i.e., p(u) = 0 or 1 according as u is an even or odd permutation; see Lang, pp. 452-3, especially Proposition 4.8.
We have:
pos(i,j,s,n) is the sum of the n!/2 products for which p(u) = 0, and
neg(i,j,s,n) is the sum of the n!/2 products for which p(u) = 1.
Here, the foundational array (m(i,j)) is the natural number array (see A000027, A185787, A144112). The row sequences of pos(i,j,s,n) and neg(i,j,s,n) are linearly recurrent with signature (5, -10, 10, -5, 1).

Examples

			Corner of neg(i,j,1,2):
     6     20    56     132    272    506    870   1406   2162   3192
    30     72    156    306    552    930   1482   2256   3306   4692
    90    182    342    600    992   1560   2352   3422   4830   6642
   210    380    650   1056   1640   2450   3540   4970   6806   9120
   420    702   1122   1722   2550   3660   5112   6972   9312  12210
   756   1190   1806   2652   3782   5256   7140   9506  12432  16002
  1260   1892   2756   3906   5402   7310   9702  12656  16256  20592
  1980   2862   4032   5550   7482   9900  12882  16512  20880  26082
  2970   4160   5700   7656  10100  13110  16770  21170  26406  32580
  4290   5852   7832  10302  13340  17030  21462  26732  32942  40200
  6006   8010  10506  13572  17292  21756  27060  33306  40602  49062
  8190  10712  13806  17556  22052  27390  33672  41006  49506  59292
M(1,1,1,2) is the matrix with (row 1) = (1,2), (row 2) =(3,5), so that
pos(1,1,1,2) = 1*5 = 5; neg(1,1,1,2) = 2*3 = 6; D(1,1,1,2) = -1; P(1,1,1,2) = 11.
		

References

  • S. Lang, Algebra, 2nd ed., Addison-Wesley, 1984, 452-453.

Crossrefs

Programs

  • Mathematica
    s = 1; n = 2; z = 12;
    r[n_, k_] := n + (n + k - 2)*(n + k - 1)/2 (* Array A000027 *)
    Grid[Table[r[n, k], {n, 1, z}, {k, 1, z}]]
    t[i_, j_] := Table[r[i, j + k*s], {k, 0, n - 1}];
    d[i_, j_] := Det[Table[t[i + k*s, j], {k, 0, n - 1}]];  (* D(i,j,s,n) *)
    p[i_, j_] := Permanent[Table[t[i + k*s, j], {k, 0, n - 1}]];  (* P(i,j,s,n) *)
    pos[i_, j_] := (p[i, j] + d[i, j])/2;
    neg[i_, j_] := (p[i, j] - d[i, j])/2;
    Grid[Table[pos[i, j], {i, 1, z}, {j, 1, z}]]  (* A380660 array *)
    Grid[Table[neg[i, j], {i, 1, z}, {j, 1, z}]]  (* A380661 array *)
    FindLinearRecurrence[Table[pos[1, k], {k, 1, 20}]] (* row recurrence, all rows *)
    FindLinearRecurrence[Table[neg[7, k], {k, 1, 20}]] (* row recurrence, all rows *)
    Table[pos[k, m - k], {m, 2, z}, {k, 1, m - 1}] // Flatten (* A380660 sequence *)
    Table[neg[k, m - k], {m, 2, z}, {k, 1, m - 1}] // Flatten (* A380661 sequence *)

A228048 Decimal expansion of (Pi/2)*tanh(Pi/2).

Original entry on oeis.org

1, 4, 4, 0, 6, 5, 9, 5, 1, 9, 9, 7, 7, 5, 1, 4, 5, 9, 2, 6, 5, 8, 9, 3, 2, 5, 0, 2, 9, 1, 3, 9, 8, 1, 7, 1, 2, 5, 2, 5, 2, 9, 7, 0, 8, 4, 6, 7, 3, 6, 5, 8, 6, 9, 0, 8, 2, 1, 6, 1, 4, 0, 9, 2, 4, 6, 2, 0, 3, 1, 1, 5, 2, 2, 3, 3, 5, 6, 6, 0, 7, 7, 6, 4, 7, 9
Offset: 1

Views

Author

Clark Kimberling, Aug 06 2013

Keywords

Comments

The old name was: Decimal expansion of sum of reciprocals, main diagonal of the natural number array, A185787.
Let s(n) be the sum of reciprocals of the numbers in row n of the array T at A185787 given by T(n,k) = n + (n+k-2)(n+k-1)/2, and let r = (2*pi/sqrt(7))*tanh(pi*sqrt(7)/2), as at A226985. Then s(1) = r, and s(2) to s(5) are given by A228044 to A228047.
Let c(n) be the sum of reciprocals of the numbers in column n of T. Then c(1) = 2; c(2) = 11/9, c(4) = 29/50, and c(3) is given by A228049. Let d(n) be the sum of reciprocals of the numbers in the main diagonal, (T(n,n)); then d(2) = (1/12)*(pi)^2; d(3) = 1/2, and d(1) is given by A228048.
This is also the value of the series 1 + 2*Sum_{n>=1} 1/(4*n^4 + 1) = 1 + 2*(1/5 + 1/65 + 1/325 + ...). See the Koecher reference, p. 189. - Wolfdieter Lang, Oct 30 2017

Examples

			1/1 + 1/5 + 1/13 + ... = (Pi/2)*tanh(Pi/2) = 1.4406595199775145926589...
		

References

  • Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, p. 189.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = Infinity; t[n_, k_] := t[n, k] = n + (n + k - 2) (n + k - 1)/2; u = N[Sum[1/t[n, n], {n, 1, Infinity}], 130]; RealDigits[u, 10]
    RealDigits[Pi*Tanh[Pi/2]/2, 10, 100][[1]] (* Amiram Eldar, Apr 09 2022 *)
  • PARI
    (Pi/2)*tanh(Pi/2) \\ Michel Marcus, Jun 20 2020

Formula

Equals Sum_{k>=0} 1/A001844(k). - Amiram Eldar, Jun 20 2020
Equals Integral_{x=0..oo} sin(x)/sinh(x) dx. - Amiram Eldar, Aug 10 2020
Equals Product_{k>=2} ((k^2 + 1)/(k^2 - 1))^((-1)^k). - Amiram Eldar, Apr 09 2022

Extensions

Name changed by Wolfdieter Lang, Oct 30 2017

A079824 Sum of numbers in n-th upward diagonal of triangle in A079823.

Original entry on oeis.org

1, 2, 7, 12, 25, 37, 62, 84, 125, 160, 221, 272, 357, 427, 540, 632, 777, 894, 1075, 1220, 1441, 1617, 1882, 2092, 2405, 2652, 3017, 3304, 3725, 4055, 4536, 4912, 5457, 5882, 6495, 6972, 7657, 8189, 8950, 9540, 10381, 11032, 11957, 12672, 13685, 14467, 15572
Offset: 1

Views

Author

Amarnath Murthy, Feb 11 2003

Keywords

Crossrefs

Cf. A000326, A079823, A185787 and A185788 (bisections).

Programs

  • Magma
    [(15+25*n+15*n^2+14*n^3 -3*(-1)^n*(5+3*n+n^2))/96: n in [1..60]]; // G. C. Greubel, Dec 08 2023
    
  • Maple
    A079824aux := proc(n,k)
        A000124(n)+k ;
    end proc:
    A079824 := proc(n)
        local a,k,n0 ;
        n0 := n-1 ;
        a := 0 ;
        for k from 0 to floor(n0/2) do
            a := a+A079824aux(n0-k,k) ;
        end do:
        a ;
    end proc: # R. J. Mathar, Aug 23 2012
  • Mathematica
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{1,2,7,12,25,37,62},60] (* Harvey P. Dale, May 06 2014 *)
  • Python
    def a(n): return (15 + 25*n + 15*(n**2) + 14*(n**3) - 3*(((-1)**n))*(5 + n*(3 + n))) // 96 # Torlach Rush, Aug 14 2022
    
  • SageMath
    [(15+25*n+15*n^2+14*n^3 -3*(-1)^n*(5+3*n+n^2))/96 for n in range(1,61)] # G. C. Greubel, Dec 08 2023

Formula

From Philippe Deléham, Feb 16 2004: (Start)
a(2*n) = (n/6)*(7*n^2 + 3*n + 2);
a(2*n-1) = (n/6)*(7*n^2 - 6*n + 5). (End)
G.f.: x*(1+x+2*x^2+2*x^3+x^4) / ( (1+x)^3*(1-x)^4 ). - R. J. Mathar, Aug 23 2012
From Richard Peterson, Aug 19 2020: (Start)
a(2*n) - a(2*n-1) = A000326(n).
a(2*n+1) - a(2*n) = n^2 + (n+1)^2. (End)
a(n) = (15 + 25*n + 15*n^2 + 14*n^3 - 3*(-1)^n*(5 + n*(3 + n)))/96. - Torlach Rush, Aug 14 2022
E.g.f.: (1/48)*( x*(33 + 27*x + 7*x^2)*cosh(x) + (15 + 21*x + 30*x^2 + 7*x^3)*sinh(x) ). - G. C. Greubel, Dec 08 2023

Extensions

More terms from Jason D. W. Taff (jtaff(AT)jburroughs.org), Oct 31 2003
More terms from Philippe Deléham, Feb 16 2004
Typo corrected by Kevin Ryde, Aug 23 2012
Showing 1-10 of 18 results. Next