A048680 Nonnegative integers A001477 expanded with rewrite 0->0, 01->1, then interpreted as Zeckendorffian expansions (as numbers of Fibonacci number system).
0, 1, 2, 4, 3, 6, 7, 12, 5, 9, 10, 17, 11, 19, 20, 33, 8, 14, 15, 25, 16, 27, 28, 46, 18, 30, 31, 51, 32, 53, 54, 88, 13, 22, 23, 38, 24, 40, 41, 67, 26, 43, 44, 72, 45, 74, 75, 122, 29, 48, 49, 80, 50, 82, 83, 135, 52, 85, 86, 140, 87, 142, 143, 232, 21, 35, 36, 59, 37, 61
Offset: 0
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 0..10000
- Ron Knott, About Fibonacci Number System
- Index entries for sequences that are permutations of the natural numbers
Programs
-
Maple
rewrite_0to0_1to01 := proc(n) option remember; if(n < 2) then RETURN(n); else RETURN(((2^(1+(n mod 2))) * rewrite_0to0_1to01(floor(n/2))) + (n mod 2)); fi; end; interpret_as_zeckendorf_expansion := n -> sum('(bit_i(n,i)*fib(i+2))','i'=0..floor_log_2(n));
-
PARI
a(n)=my(k=1,s);while(n,if(n%2,s+=fibonacci(k++));k++;n>>=1);s \\ Charles R Greathouse IV, Nov 17 2013
Formula
a(n) = interpret_as_zeckendorf_expansion(rewrite_0to0_1to01(n)) (where rewrite_0to0_1to01(n)=A048678[ n ])
Comments