A182102
Table of triangular arguments such that if A002262(14*k) = "r" then the product A182431(k,i + 1) * A182431(k,i + 2) equals "r" + A000217(a(k,i)).
Original entry on oeis.org
0, -1, 4, 48, -1, 7, 343, 16, 0, 8, 2064, 123, -1, 3, 10, 12095, 748, 0, 12, 5, 11, 70560, 4391, 7, 71, 10, 8, 12, 411319, 25624, 48, 416, 45, 23, 11, 13, 2397408, 149379, 287, 2427, 250, 116, 36, 14, 14, 13973183, 870676
Offset: 0
The table begins as follows:
0 -1 48 343 2064 12095 70560 ...
4 -1 16 123 748 4391 25624 ...
7 0 -1 0 7 48 287 ...
8 3 12 71 416 2427 14148 ...
10 5 10 45 250 1445 8410 ...
11 8 23 116 659 3824 22271 ...
12 11 36 187 1068 6203 36132 ...
13 14 49 258 1477 8582 49993 ...
14 17 62 329 1886 10961 63854 ...
15 20 75 400 2295 13340 77715 ...
16 23 88 471 2704 15719 91576 ...
17 26 101 542 3113 18098 105437 ...
17 30 129 710 4097 23838 138897 ...
...
For n > 1, a(k,n) = 6*a(k,n-1) - a(k,n-2) + G_k where G_k is dependent on k.
-
highTri = Compile[{{S1,_Integer}},Module[{xS0=0,xS1=S1},
While[xS1-xS0*(xS0+1)/2>xS0,xS0++];
xS0]];
overTri = Compile[{{S2,_Integer}},Module[{xS0=0,xS2=S2},
While[xS2-xS0*(xS0+1)/2>xS0,xS0++];
xS2 - (xS0*(1+xS0)/2)]];
tt = SparseArray[{{12,1} -> 1,{1,12} -> 1}];
K1 = 0;
m = 14;While[K1<12,J1=highTri[m*K1];X =2*(m+K1-(J1*2+1));
K2 = 6 K1 - m + X; K3 = 6 K2 - K1 + X;K4 = 6 K3 - K2 + X;
o = overTri[m*K1]; tt[[1,K1+1]] =highTri[m*K1];
tt[[2,K1+1]] = highTri[K1*K2-o];tt[[3,K1+1]] = highTri[K2*K3-o];tt[[4,K1+1]] = highTri[K3*K4-o];
K1++];k = 1;
While[k<13,z = 1; xx = 99; While[z<5 && xx == 99,
If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,Break[]];
If[z == 1,t = -tt[[z,k]]-1;tt[[z,k]] = t,s = -tt[[z-1,k]]-1;tt[[z-1,k]]=s;t =-tt[[z,k]]-1];tt[[z,k]] = t;
w = 1;While[w<5 && xx == 99,If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,xx =0;Break[]];If[w==z,w++];
t=-tt[[w,k]] - 1;tt[[w,k]]=t;If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,xx =0;Break[],
t = -tt[[w,k]] - 1];tt[[w,k]] = t;w++];z++];cc = tt[[1,k]] -6 tt[[2,k]] + tt[[3,k]];p = 5;While[p < 14-k,
tt[[p,k]] = 6 tt[[p-1,k]] - tt[[p-2,k]] + cc;p++]; k++];
a=1;list2 = Reap[While[a<11, b=a; While[b>0, Sow[tt[[b, a+1-b]]]; b--]; a++]][[2, 1]];list2
Original entry on oeis.org
0, 1, 4, 7, 24, 41, 140, 239, 816, 1393, 4756, 8119, 27720, 47321, 161564, 275807, 941664, 1607521, 5488420, 9369319, 31988856, 54608393, 186444716, 318281039, 1086679440, 1855077841, 6333631924, 10812186007, 36915112104, 63018038201, 215157040700
Offset: 0
- Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
- Colin Barker, Table of n, a(n) for n = 0..1000
- John M. Campbell, An Integral Representation of Kekulé Numbers, and Double Integrals Related to Smarandache Sequences, arXiv preprint arXiv:1105.3399 [math.GM], 2011.
- Creighton Kenneth Dement, Comments on A143608 and A143609
- Vincent Granville, Successive records in mathematical sequences: surprising result, Mathematics Stack Exchange, 2019.
- Clark Kimberling, Best lower and upper approximations to irrational numbers, Elem. Math. vol. 52 iss. 3 (1997) 122-126.
- D. H. Lehmer, An extended theory of Lucas' functions, Annals of Mathematics, Second Series, Vol. 31, No. 3 (Jul., 1930), pp. 419-448.
- Eric Weisstein's World of Mathematics, Lehmer Number
- Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1).
-
I:=[0,1,4,7]; [n le 4 select I[n] else 6*Self(n-2) - Self(n-4): n in [1..30]]; // G. C. Greubel, Mar 27 2018
-
A143608 := proc(n)
option remember;
if n <= 3 then
op(n+1,[0,1,4,7]) ;
else
6*procname(n-2)-procname(n-4) ;
end if;
end proc: # R. J. Mathar, Jul 22 2012
-
a = -4; b = -1; Reap[While[b<2000000000, t = 4*b-a; Sow[t]; a=b; b=t; t = 2*b-a; Sow[t]; a=b; b=t]][[2,1]]
CoefficientList[Series[x*(1 + 4*x + x^2)/(1 - 6*x^2 + x^4), {x, 0, 30}], x] (* Wesley Ivan Hurt, Aug 24 2014 *)
LinearRecurrence[{0, 6, 0, -1}, {0, 1, 4, 7}, 31] (* Jean-François Alcover, Sep 21 2017 *)
-
a(n)=([0,1,0,0;0,0,1,0;0,0,0,1;-1,0,6,0]^n*[0;1;4;7])[1,1] \\ Charles R Greathouse IV, Jun 11 2015
-
concat(0, Vec(x*(1+4*x+x^2)/((1+2*x-x^2)*(1-2*x-x^2)) + O(x^50))) \\ Colin Barker, Mar 27 2016
A182190
a(n) = 6*a(n-1) - a(n-2) + 4 with n > 1, a(0)=0, a(1)=4.
Original entry on oeis.org
0, 4, 28, 168, 984, 5740, 33460, 195024, 1136688, 6625108, 38613964, 225058680, 1311738120, 7645370044, 44560482148, 259717522848, 1513744654944, 8822750406820, 51422757785980, 299713796309064
Offset: 0
-
I:=[0,4]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2)+4: n in [1..20]]; // Bruno Berselli, Jun 07 2012
-
m = 4;n = 0; c = 0;
list3 = Reap[While[c < 22, t = 6 n - m + 4; Sow[t];m = n; n = t;c++]][[2,1]]
Table[Fibonacci[2*n+1, 2] -1, {n,0,40}] (* G. C. Greubel, May 24 2021 *)
-
[lucas_number1(2*n+1,2,-1) -1 for n in (0..40)] # G. C. Greubel, May 24 2021
A182189
a(n) = 6*a(n-1) - a(n-2) - 4 with n > 1, a(0)=1, a(1)=3.
Original entry on oeis.org
1, 3, 13, 71, 409, 2379, 13861, 80783, 470833, 2744211, 15994429, 93222359, 543339721, 3166815963, 18457556053, 107578520351, 627013566049, 3654502875939, 21300003689581, 124145519261543, 723573111879673, 4217293152016491, 24580185800219269, 143263821649299119
Offset: 0
-
I:=[1,3]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2)-4: n in [1..41]]; // Bruno Berselli, Jun 07 2012
-
m = -11;n = -1; c = 0;
list3 = Reap[While[c < 22, t = 6 n - m - 4; Sow[t];m = n; n = t;c++]][[2,1]]
CoefficientList[Series[(1-4*x-x^2)/((1-x)*(1-6*x+x^2)),{x,0,40}],x] (* Vincenzo Librandi, Jul 26 2012 *)
1 + Fibonacci[2*Range[0, 40], 2] (* G. C. Greubel, May 24 2021 *)
-
my(x='x+O('x^40)); Vec((1-4*x-x^2)/((1-x)*(1-6*x+x^2))) \\ Altug Alkan, Dec 30 2017
-
[1 + lucas_number1(2*n,2,-1) for n in (0..40)] # G. C. Greubel, May 24 2021
A182439
Table a(k,i), read by antidiagonals, in which the n-th row comprises A214206(n) in position 0 followed by a second order recursive series G in which each product G(i)*G(i+1) lies in the same row of A001477 (interpreted as a square array - see below).
Original entry on oeis.org
0, 0, 4, 14, 1, 7, 110, 14, 2, 8, 672, 95, 14, 3, 10, 3948, 568, 84, 14, 4, 11, 23042, 3325, 492, 81, 14, 5, 12, 134330, 19394, 2870, 472, 74, 14, 6, 13, 782964, 113051, 16730, 2751, 424, 71, 14, 7, 14, 4563480, 658924, 97512, 16034, 2464, 404, 68, 14, 8, 15
Offset: 0
0, 0, 14, 110, 672, 3948, 23042,134330,782964,
4, 1, 14, 95, 568, 3325, 19394,113051,658924,
7, 2, 14, 84, 492, 2870, 16730, 97512,568344,
8, 3, 14, 81, 472, 2751, 16034, 93453,544684,
10, 4, 14, 74, 424, 2464, 14354, 83654,487564,
11, 5, 14, 71, 404, 2345, 13658, 79595,463904,
12, 6, 14, 68, 384, 2226, 12962, 75536,440244.
Note that 0*14, 14*110, 110*672, etc. are all triangular numbers and thus appear in row 0 of square array A001477; while, 1*14, 14*95, 95*568, 568*3325, etc. are all 4 more than a triangular number and appear in row 4 of square array A001477.
-
A182439 := proc(n,k)
if k = 0 then
A003056(14*n) ;
elif k = 1 then
n;
elif k = 2 then
14;
else
6*procname(n,k-1)-procname(n,k-2)+ 28+2*n-2-4*procname(n,0) ;
end if;
end proc: # R. J. Mathar, Jul 09 2012
-
highTri = Compile[{{S1,_Integer}}, Module[{xS0=0, xS1=S1}, While[xS1-xS0*(xS0+1)/2 > xS0, xS0++]; xS0]];
overTri = Compile[{{S2,_Integer}}, Module[{xS0=0, xS2=S2}, While[xS2-xS0*(xS0+1)/2 > xS0, xS0++]; xS2 - (xS0*(1+xS0)/2)]];
K1 = 0; m = 14; tab=Reap[While[K1<16,J1=highTri[m*K1]; X = 2*(m+K1-(J1*2+1)); K2 = (6 m - K1 + X); K3 = 6 K2 - m + X;
K4 = 6 K3 - K2 + X; K5 = 6 K4 -K3 + X; K6 = 6*K5 - K4 + X; K7 = 6*K6-K5+X; K8 = 6*K7-K6+X; Sow[J1,c]; Sow[K1,d]; Sow[m,e];
Sow[K2,f]; Sow[K3,g]; Sow[K4,h];
Sow[K5,i]; Sow[K6,j]; Sow[K7,k]; Sow[K8,l]; K1++]][[2]]; a=1; list5 = Reap[While[a<11, b=a; While[b>0,
Sow[tab[[b,a+1-b]]]; b--]; a++]][[2,1]]; list5
(* Second program: *)
A003056[n_] := Floor[(Sqrt[1 + 8n] - 1)/2];
T[n_, k_] := Switch[k, 0, A003056[14n], 1, n, 2, 14, _, 6T[n, k-1] - T[n, k-2] + 28 + 2n - 2 - 4T[n, 0]];
Table[T[n-k, k], {n, 0, 9}, {k, n, 0, -1}] (* Jean-François Alcover, May 09 2023, after R. J. Mathar *)
A182441
Table, read by antidiagonals, in which the n-th row comprises A214206(n) in position 0 followed by a second order recursive series G in which each product G(i)*G(i+1) lies in the same row of A001477 (interpreted as a square array - see below).
Original entry on oeis.org
0, 0, 4, 14, 1, 7, 114, 14, 2, 8, 700, 131, 14, 3, 10, 4116, 820, 144, 14, 4, 11, 24026, 4837, 912, 149, 14, 5, 12, 140070, 28250, 5390, 948, 158, 14, 6, 13, 816424, 164711, 31490, 5607, 1012, 163, 14, 7, 14, 4758504
Offset: 0
For i>0 a(0,i) * a(0,i+1) = 0*14,14*114,114*700,700*4116,etc. which are all triangular numbers and lie in row 0 of square array A001477, while a(1,i)*a(1.i+1) = 1*14, 14*131, 131*820, 820*4837 etc. which are all 4 more than a triangular number and lie in row 4 of square array A001477.
-
highTri = Compile[{{S1,_Integer}}, Module[{xS0=0, xS1=S1}, While[xS1-xS0*(xS0+1)/2 > xS0, xS0++]; xS0]];
overTri = Compile[{{S2,_Integer}}, Module[{xS0=0, xS2=S2}, While[xS2-xS0*(xS0+1)/2 > xS0, xS0++]; xS2 - (xS0*(1+xS0)/2)]];
K1 = 0; m = 14; tab=Reap[While[K1<16,J1=highTri[m*K1]; X = 2*(m+K1+(J1*2+1)); K2 = (6 m - K1 + X); K3 = 6 K2 - m + X;
K4 = 6 K3 - K2 + X; K5 = 6 K4 -K3 + X; K6 = 6*K5 - K4 + X; K7 = 6*K6-K5+X; K8 = 6*K7-K6+X; Sow[J1,c]; Sow[K1,d]; Sow[m,e];
Sow[K2,f]; Sow[K3,g]; Sow[K4,h];
Sow[K5,i]; Sow[K6,j]; Sow[K7,k]; Sow[K8,l]; K1++]][[2]]; a=1; list5 = Reap[While[a<11, b=a; While[b>0,
Sow[tab[[b,a+1-b]]]; b--]; a++]][[2,1]]; list5
A182440
Table, read by antidiagonals, in which the n-th row comprises A214206(n) in position 0 followed by a second order recursive series G in which each product G(i)*G(i+1) lies in the same row of A001477 (interpreted as a square array).
Original entry on oeis.org
0, 14, 4, 0, 14, 7, 16, 1, 14, 8, 126, 40, 2, 14, 10, 770, 287, 60, 3, 14, 11, 4524, 1730, 420, 72, 4, 14, 12, 26404, 10141, 2522, 497, 88, 5, 14, 13, 153930, 59164, 14774, 2978, 602, 100, 6, 14, 14, 897206
Offset: 0
For i = 1,2,3,4 ..., a(1,i)*a(1,i+1) = 14*1,1*40,40*287,287*1730, ...; and, each product is 4 more than a triangular number and thus lies in row 4 of square array A001477.
-
highTri = Compile[{{S1,_Integer}},Module[{xS0=0,xS1=S1},
While[xS1-xS0*(xS0+1)/2>xS0,xS0++];
xS0]];
overTri = Compile[{{S2,_Integer}},Module[{xS0=0,xS2=S2},
While[xS2-xS0*(xS0+1)/2>xS0,xS0++];
xS2 - (xS0*(1+xS0)/2)]];
K1 = 0;
m = 14;table=Reap[While[K1<16,J1=highTri[m*K1];X = 2*(m+K1+(J1*2+1));K2 = (6 K1 - m + X);K3 = 6 K2 - K1 + X;
K4 = 6 K3 - K2 + X; K5 = 6 K4 -K3 + X; K6 = 6*K5 - K4 + X;K7 = 6*K6-K5+X; K8 = 6*K7-K6+X; Sow[J1,c];Sow[m,d];
Sow[K1,e];Sow[K2,f];Sow[K3,g];Sow[K4,h];
Sow[K5,i]; Sow[K6,j];Sow[K7,k];Sow[K8,l];
K1++]][[2]];
a=1;
list5 = Reap[While[a<11,b=a;
While[b>0,Sow[table[[b,a+1-b]]];b--];a++]][[2,1]];
list5
Showing 1-7 of 7 results.
Comments