cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A290689 Number of transitive rooted trees with n nodes.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 88, 143, 229, 370, 592, 955, 1527, 2457, 3929, 6304, 10081
Offset: 1

Views

Author

Gus Wiseman, Oct 19 2017

Keywords

Comments

A rooted tree is transitive if every proper terminal subtree is also a branch of the root. First differs from A206139 at a(13) = 143.
Regarding the notation, a rooted tree is a finite multiset of rooted trees. For example, the rooted tree (o(o)(oo)) is short for {{},{{}},{{},{}}}. Each "o" is a leaf. Each pair of parentheses corresponds to a non-leaf node (such as the root). Its contents "(...)" represent a branch. - Gus Wiseman, Nov 16 2024

Examples

			The a(7) = 8 7-node transitive rooted trees are: (o(oooo)), (oo(ooo)), (o(o)((o))), (o(o)(oo)), (ooo(oo)), (oo(o)(o)), (oooo(o)), (oooooo).
		

Crossrefs

The restriction to identity trees (A004111) is A279861, ranks A290760.
These trees are ranked by A290822.
The anti-transitive version is A306844, ranks A324758.
The totally transitive case is A318185 (by leaves A318187), ranks A318186.
A version for integer partitions is A324753, for subsets A324736.
The ordered version is A358453, ranks A358457, undirected A358454.

Programs

  • Mathematica
    nn=18;
    rtall[n_]:=If[n===1,{{}},Module[{cas},Union[Sort/@Join@@(Tuples[rtall/@#]&/@IntegerPartitions[n-1])]]];
    Table[Length[Select[rtall[n],Complement[Union@@#,#]==={}&]],{n,nn}]

Extensions

a(20) from Robert Price, Sep 13 2018
a(21)-a(22) from Robert P. P. McKone, Dec 16 2023

A364914 Number of subsets of {1..n} such that some element can be written as a nonnegative linear combination of the others.

Original entry on oeis.org

0, 0, 1, 3, 9, 20, 48, 101, 219, 454, 944, 1917, 3925, 7915, 16004, 32188, 64751, 129822, 260489, 521672, 1045060, 2091808, 4187047, 8377255, 16762285, 33531228, 67077485, 134170217, 268371678, 536772231, 1073611321, 2147282291, 4294697258, 8589527163, 17179321094
Offset: 0

Views

Author

Gus Wiseman, Aug 17 2023

Keywords

Comments

A variation of non-binary combination-full sets where parts can be re-used. The complement is counted by A326083. The binary version is A093971. For non-re-usable parts we have A364534. First differences are A365046.

Examples

			The set {3,4,5,17} has 17 = 1*3 + 1*4 + 2*5, so is counted under a(17).
The a(0) = 0 through a(5) = 20 subsets:
  .  .  {1,2}  {1,2}    {1,2}      {1,2}
               {1,3}    {1,3}      {1,3}
               {1,2,3}  {1,4}      {1,4}
                        {2,4}      {1,5}
                        {1,2,3}    {2,4}
                        {1,2,4}    {1,2,3}
                        {1,3,4}    {1,2,4}
                        {2,3,4}    {1,2,5}
                        {1,2,3,4}  {1,3,4}
                                   {1,3,5}
                                   {1,4,5}
                                   {2,3,4}
                                   {2,3,5}
                                   {2,4,5}
                                   {1,2,3,4}
                                   {1,2,3,5}
                                   {1,2,4,5}
                                   {1,3,4,5}
                                   {2,3,4,5}
                                   {1,2,3,4,5}
		

Crossrefs

The binary complement is A007865.
The binary version without re-usable parts is A088809.
The binary version is A093971.
The complement without re-usable parts is A151897.
The complement is counted by A326083.
The version without re-usable parts is A364534.
The version for strict partitions is A364839, complement A364350.
The version for partitions is A364913.
The version for positive combinations is A365043, complement A365044.
First differences are A365046.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]],Or@@Table[combs[#[[k]],Delete[#,k]]!={},{k,Length[#]}]&]],{n,0,10}]
  • Python
    from itertools import combinations
    from sympy.utilities.iterables import partitions
    def A364914(n):
        c, mlist = 0, []
        for m in range(1,n+1):
            t = set()
            for p in partitions(m,k=m-1):
                t.add(tuple(sorted(p.keys())))
            mlist.append([set(d) for d in t])
        for k in range(2,n+1):
            for w in combinations(range(1,n+1),k):
                ws = set(w)
                for d in w:
                    for s in mlist[d-1]:
                        if s <= ws:
                            c += 1
                            break
                    else:
                        continue
                    break
        return c # Chai Wah Wu, Nov 17 2023

Extensions

a(12)-a(34) from Chai Wah Wu, Nov 17 2023

A365046 Number of subsets of {1..n} containing n such that some element can be written as a nonnegative linear combination of the others.

Original entry on oeis.org

0, 0, 1, 2, 6, 11, 28, 53, 118, 235, 490, 973, 2008, 3990, 8089, 16184, 32563, 65071, 130667, 261183, 523388, 1046748, 2095239, 4190208, 8385030, 16768943, 33546257, 67092732, 134201461, 268400553, 536839090, 1073670970, 2147414967, 4294829905, 8589793931
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2023

Keywords

Comments

Includes all subsets containing both 1 and n.

Examples

			The subset {3,4,10} has 10 = 2*3 + 1*4 so is counted under a(10).
The a(0) = 0 through a(5) = 11 subsets:
  .  .  {1,2}  {1,3}    {1,4}      {1,5}
               {1,2,3}  {2,4}      {1,2,5}
                        {1,2,4}    {1,3,5}
                        {1,3,4}    {1,4,5}
                        {2,3,4}    {2,3,5}
                        {1,2,3,4}  {2,4,5}
                                   {1,2,3,5}
                                   {1,2,4,5}
                                   {1,3,4,5}
                                   {2,3,4,5}
                                   {1,2,3,4,5}
		

Crossrefs

The complement is A124506, first differences of A326083.
The binary complement is A288728, first differences of A007865.
First differences of A364914.
The positive version is A365042, first differences of A365043.
The positive complement is counted by A365045, first differences of A365044.
Without re-usable parts we have A365069, first differences of A364534.
The binary version is A365070, first differences of A093971.
A364350 counts combination-free strict partitions, complement A364839.
A085489 and A364755 count subsets without the sum of two distinct elements.
A088809 and A364756 count subsets with the sum of two distinct elements.
A364913 counts combination-full partitions.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Or@@Table[combs[#[[k]],Union[Delete[#,k]]]!={},{k,Length[#]}]&]],{n,0,10}]

Formula

a(n+1) = 2^n - A124506(n).

A325702 Number of integer partitions of n containing their multiset of multiplicities (as a submultiset).

Original entry on oeis.org

1, 1, 0, 0, 2, 1, 2, 1, 3, 3, 8, 7, 10, 13, 17, 19, 28, 35, 38, 51, 67, 81, 100, 128, 157, 195, 233, 285, 348, 427, 506, 613, 733, 873, 1063, 1263, 1503, 1802, 2131, 2537, 3005, 3565, 4171, 4922, 5820, 6775, 8001, 9333, 10860, 12739, 14840, 17206, 20029, 23248
Offset: 0

Views

Author

Gus Wiseman, May 18 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A325755.

Examples

			The partition x = (4,3,1,1,1) has multiplicities (3,1,1), which are a submultiset of x, so x is counted under a(10).
The a(1) = 1 through a(11) = 7 partitions:
  (1)  (22)   (221)  (2211)  (3211)  (4211)   (333)    (3322)    (7211)
       (211)         (3111)          (32111)  (5211)   (3331)    (33221)
                                     (41111)  (32211)  (6211)    (52211)
                                                       (42211)   (53111)
                                                       (43111)   (322211)
                                                       (322111)  (332111)
                                                       (421111)  (431111)
                                                       (511111)
		

Crossrefs

Programs

  • Mathematica
    submultQ[cap_,fat_]:=And@@Function[i,Count[fat,i]>=Count[cap,i]]/@Union[List@@cap]
    Table[Length[Select[IntegerPartitions[n],submultQ[Sort[Length/@Split[#]],#]&]],{n,0,30}]

A324741 Number of subsets of {1...n} containing no prime indices of the elements.

Original entry on oeis.org

1, 2, 3, 5, 8, 13, 19, 30, 54, 96, 156, 248, 440, 688, 1120, 1864, 3664, 5856, 11232, 16896, 31296, 53952, 91008, 137472, 270528, 516720, 863088, 1710816, 3173856, 4836672, 9329472, 14897376, 29788128, 52256448, 88429248, 166037184, 331648704, 497685888, 829449600
Offset: 0

Views

Author

Gus Wiseman, Mar 15 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(0) = 1 through a(6) = 19 subsets:
  {}  {}   {}   {}     {}     {}       {}
      {1}  {1}  {1}    {1}    {1}      {1}
           {2}  {2}    {2}    {2}      {2}
                {3}    {3}    {3}      {3}
                {1,3}  {4}    {4}      {4}
                       {1,3}  {5}      {5}
                       {2,4}  {1,3}    {6}
                       {3,4}  {1,5}    {1,3}
                              {2,4}    {1,5}
                              {2,5}    {2,4}
                              {3,4}    {2,5}
                              {4,5}    {3,4}
                              {2,4,5}  {3,6}
                                       {4,5}
                                       {4,6}
                                       {5,6}
                                       {2,4,5}
                                       {3,4,6}
                                       {4,5,6}
An example for n = 20 is {5,6,7,9,10,12,14,15,16,19,20}, with prime indices:
   5: {3}
   6: {1,2}
   7: {4}
   9: {2,2}
  10: {1,3}
  12: {1,1,2}
  14: {1,4}
  15: {2,3}
  16: {1,1,1,1}
  19: {8}
  20: {1,1,3}
None of these prime indices {1,2,3,4,8} belong to the subset, as required.
		

Crossrefs

The maximal case is A324743. The strict integer partition version is A324751. The integer partition version is A324756. The Heinz number version is A324758. An infinite version is A304360.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]],{n,0,10}]
  • PARI
    pset(n)={my(b=0,f=factor(n)[,1]); sum(i=1, #f, 1<<(primepi(f[i])))}
    a(n)={my(p=vector(n,k,pset(k)), d=0); for(i=1, #p, d=bitor(d, p[i]));
    ((k,b)->if(k>#p, 1, my(t=self()(k+1,b)); if(!bitand(p[k], b), t+=if(bittest(d,k), self()(k+1, b+(1<Andrew Howroyd, Aug 16 2019

Extensions

Terms a(21) and beyond from Andrew Howroyd, Aug 16 2019

A365043 Number of subsets of {1..n} whose greatest element can be written as a (strictly) positive linear combination of the others.

Original entry on oeis.org

0, 0, 1, 3, 7, 12, 21, 32, 49, 70, 99, 135, 185, 245, 323, 418, 541, 688, 873, 1094, 1368, 1693, 2092, 2564, 3138, 3810, 4620, 5565, 6696, 8012, 9569, 11381, 13518, 15980, 18872, 22194, 26075, 30535, 35711, 41627, 48473, 56290, 65283, 75533, 87298, 100631, 115911, 133219
Offset: 0

Views

Author

Gus Wiseman, Aug 25 2023

Keywords

Comments

Sets of this type may be called "positive combination-full".
Also subsets of {1..n} such that some element can be written as a (strictly) positive linear combination of the others.

Examples

			The subset S = {3,4,9} has 9 = 3*3 + 0*4, but this is not strictly positive, so S is not counted under a(9).
The subset S = {3,4,10} has 10 = 2*3 + 1*4, so S is counted under a(10).
The a(0) = 0 through a(5) = 12 subsets:
  .  .  {1,2}  {1,2}    {1,2}    {1,2}
               {1,3}    {1,3}    {1,3}
               {1,2,3}  {1,4}    {1,4}
                        {2,4}    {1,5}
                        {1,2,3}  {2,4}
                        {1,2,4}  {1,2,3}
                        {1,3,4}  {1,2,4}
                                 {1,2,5}
                                 {1,3,4}
                                 {1,3,5}
                                 {1,4,5}
                                 {2,3,5}
		

Crossrefs

The binary complement is A007865, first differences A288728.
The binary version is A093971, first differences A365070.
The nonnegative complement is A326083, first differences A124506.
The nonnegative version is A364914, first differences A365046.
First differences are A365042.
The complement is counted by A365044, first differences A365045.
Without re-usable parts we have A364534, first differences A365069.
A085489 and A364755 count subsets with no sum of two distinct elements.
A088809 and A364756 count subsets with some sum of two distinct elements.
A364350 counts combination-free strict partitions, complement A364839.
A364913 counts combination-full partitions.

Programs

  • Mathematica
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Rest[Subsets[Range[n]]],combp[Last[#],Union[Most[#]]]!={}&]],{n,0,10}]
  • Python
    from itertools import combinations
    from sympy.utilities.iterables import partitions
    def A365043(n):
        mlist = tuple({tuple(sorted(p.keys())) for p in partitions(m,k=m-1)} for m in range(1,n+1))
        return sum(1 for k in range(2,n+1) for w in combinations(range(1,n+1),k) if w[:-1] in mlist[w[-1]-1]) # Chai Wah Wu, Nov 20 2023

Formula

a(n) = 2^n - A365044(n).

Extensions

a(15)-a(35) from Chai Wah Wu, Nov 20 2023
More terms from Bert Dobbelaere, Apr 28 2025

A324743 Number of maximal subsets of {1...n} containing no prime indices of the elements.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 8, 8, 8, 8, 12, 12, 18, 18, 19, 19, 30, 30, 54, 54, 54, 54, 96, 96, 96, 96, 96, 96, 156, 156, 244, 244, 248, 248, 248, 248, 440, 440, 440, 440, 688, 688, 1120, 1120, 1120, 1120, 1864, 1864, 1864, 1864, 1864, 1864, 3664, 3664, 3664, 3664, 3664
Offset: 0

Views

Author

Gus Wiseman, Mar 15 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(0) = 1 through a(8) = 8 maximal subsets:
  {}  {1}  {1}  {2}    {1,3}  {1,3}    {1,3}    {1,3,7}  {1,3,7}
           {2}  {1,3}  {2,4}  {1,5}    {1,5}    {1,5,7}  {1,5,7}
                       {3,4}  {3,4}    {2,4,5}  {2,4,5}  {2,4,5,8}
                              {2,4,5}  {3,4,6}  {2,5,7}  {2,5,7,8}
                                       {4,5,6}  {3,4,6}  {3,4,6,8}
                                                {3,6,7}  {3,6,7,8}
                                                {4,5,6}  {4,5,6,8}
                                                {5,6,7}  {5,6,7,8}
An example for n = 15 is {1,5,7,9,13,15}, with prime indices:
  1: {}
  5: {3}
  7: {4}
  9: {2,2}
  13: {6}
  15: {2,3}
None of these prime indices {2,3,4,6} belong to the subset, as required.
		

Crossrefs

The non-maximal case is A324741. The case for subsets of {2...n} is A324763.

Programs

  • Mathematica
    maxim[s_]:=Complement[s,Last/@Select[Tuples[s,2],UnsameQ@@#&&SubsetQ@@#&]];
    Table[Length[maxim[Select[Subsets[Range[n]],Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]]],{n,0,10}]
  • PARI
    pset(n)={my(b=0, f=factor(n)[, 1]); sum(i=1, #f, 1<<(primepi(f[i])))}
    a(n)={my(p=vector(n, k, pset(k)), d=0); for(i=1, #p, d=bitor(d, p[i]));
    my(ismax(b)=my(e=0); forstep(k=#p, 1, -1, if(bittest(b,k), e=bitor(e,p[k]), if(!bittest(e,k) && !bitand(p[k], b), return(0)) )); 1);
    ((k, b)->if(k>#p, ismax(b), my(f=!bitand(p[k], b)); if(!f || bittest(d, k), self()(k+1, b)) + if(f, self()(k+1, b+(1<Andrew Howroyd, Aug 26 2019

Extensions

Terms a(16) and beyond from Andrew Howroyd, Aug 26 2019

A324753 Number of integer partitions of n containing all prime indices of their parts.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 5, 7, 8, 14, 16, 23, 29, 40, 49, 66, 81, 109, 133, 172, 211, 274, 332, 419, 511, 640, 775, 965, 1165, 1434, 1730, 2109, 2530, 3083, 3683, 4447, 5308, 6375, 7573, 9062, 10730, 12786, 15104, 17909, 21095, 24937, 29284, 34488, 40421, 47450
Offset: 0

Views

Author

Gus Wiseman, Mar 16 2019

Keywords

Comments

These could be described as transitive integer partitions.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(1) = 1 through a(8) = 8 integer partitions:
  (1)  (11)  (21)   (211)   (41)     (321)     (421)      (3221)
             (111)  (1111)  (221)    (411)     (2221)     (4211)
                            (2111)   (2211)    (3211)     (22211)
                            (11111)  (21111)   (4111)     (32111)
                                     (111111)  (22111)    (41111)
                                               (211111)   (221111)
                                               (1111111)  (2111111)
                                                          (11111111)
		

Crossrefs

The subset version is A324736. The strict case is A324748. The Heinz number version is A290822. An infinite version is A324698.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],SubsetQ[#,PrimePi/@First/@Join@@FactorInteger/@DeleteCases[#,1]]&]],{n,0,30}]

A065795 Number of subsets of {1,2,...,n} that contain the average of their elements.

Original entry on oeis.org

1, 2, 4, 6, 10, 16, 26, 42, 72, 124, 218, 390, 706, 1292, 2388, 4436, 8292, 15578, 29376, 55592, 105532, 200858, 383220, 732756, 1403848, 2694404, 5179938, 9973430, 19229826, 37125562, 71762396, 138871260, 269021848, 521666984, 1012520400, 1966957692, 3824240848
Offset: 1

Views

Author

John W. Layman, Dec 05 2001

Keywords

Comments

Also the number of subsets of {1,2,...,n} with sum of entries divisible by the largest element (compare A000016). See the Palmer Melbane link for a bijection. - Joel B. Lewis, Nov 13 2014

Examples

			a(4)=6, since {1}, {2}, {3}, {4}, {1,2,3} and {2,3,4} contain their averages.
From _Gus Wiseman_, Sep 14 2019: (Start)
The a(1) = 1 through a(6) = 16 subsets:
  {1}  {1}  {1}      {1}      {1}          {1}
       {2}  {2}      {2}      {2}          {2}
            {3}      {3}      {3}          {3}
            {1,2,3}  {4}      {4}          {4}
                     {1,2,3}  {5}          {5}
                     {2,3,4}  {1,2,3}      {6}
                              {1,3,5}      {1,2,3}
                              {2,3,4}      {1,3,5}
                              {3,4,5}      {2,3,4}
                              {1,2,3,4,5}  {2,4,6}
                                           {3,4,5}
                                           {4,5,6}
                                           {1,2,3,6}
                                           {1,4,5,6}
                                           {1,2,3,4,5}
                                           {2,3,4,5,6}
(End)
		

Crossrefs

Subsets containing n whose mean is an element are A000016.
The version for integer partitions is A237984.
Subsets not containing their mean are A327471.

Programs

  • Mathematica
    Table[ Sum[a = Select[Divisors[i], OddQ[ # ] &]; Apply[ Plus, 2^(i/a) * EulerPhi[a]]/i, {i, n}]/2, {n, 34}]
    (* second program *)
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,Mean[#]]&]],{n,0,10}] (* Gus Wiseman, Sep 14 2019 *)
  • PARI
    a(n) = (1/2)*sum(i=1, n, (1/i)*sumdiv(i, d, if (d%2, 2^(i/d)*eulerphi(d)))); \\ Michel Marcus, Dec 20 2020
    
  • Python
    from sympy import totient, divisors
    def A065795(n): return sum((sum(totient(d)<>(~k&k-1).bit_length(),generator=True))<<1)//k for k in range(1,n+1))>>1 # Chai Wah Wu, Feb 22 2023

Formula

a(n) = (1/2)*Sum_{i=1..n} (f(i) - 1) where f(i) = (1/i) * Sum_{d | i and d is odd} 2^(i/d) * phi(d).
a(n) = (n + A051293(n))/2.
a(n) = 2^n - A327471(n). - Gus Wiseman, Sep 14 2019

Extensions

Edited and extended by Robert G. Wilson v, Nov 15 2002

A324744 Number of maximal subsets of {1...n} containing no element whose prime indices all belong to the subset.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 4, 5, 6, 8, 8, 11, 11, 22, 22, 22, 22, 28, 28, 44, 44, 52, 52, 76, 76, 88, 88, 96, 96, 184, 184, 240, 240, 264, 264, 296, 296, 592, 592, 592, 592, 728, 728, 1456, 1456, 1456, 1456, 2912, 2912, 3168, 3168, 3168, 3168, 5568, 5568, 5568, 5568
Offset: 0

Views

Author

Gus Wiseman, Mar 15 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(1) = 1 through a(8) = 6 maximal subsets:
  {1}  {1}  {2}    {1,3}  {1,3}    {1,3,6}    {3,4,6}    {1,3,6,7}
       {2}  {1,3}  {2,4}  {1,5}    {1,5,6}    {1,3,6,7}  {1,5,6,7}
                   {3,4}  {3,4}    {3,4,6}    {1,5,6,7}  {3,4,6,8}
                          {2,4,5}  {2,4,5,6}  {2,4,5,6}  {3,6,7,8}
                                              {2,5,6,7}  {2,4,5,6,8}
                                                         {2,5,6,7,8}
		

Crossrefs

The non-maximal case is A324738. The case for subsets of {2...n} is A324762.

Programs

  • Mathematica
    maxim[s_]:=Complement[s,Last/@Select[Tuples[s,2],UnsameQ@@#&&SubsetQ@@#&]];
    Table[Length[maxim[Select[Subsets[Range[n]],!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]]],{n,0,10}]
  • PARI
    pset(n)={my(b=0, f=factor(n)[, 1]); sum(i=1, #f, 1<<(primepi(f[i])))}
    a(n)={my(p=vector(n, k, if(k==1, 1, pset(k))), d=0); for(i=1, #p, d=bitor(d, p[i]));
    my(ismax(b)=for(k=1, #p, if(!bittest(b,k) && bitnegimply(p[k], b), my(e=bitor(b, 1<#p, ismax(b), my(f=bitnegimply(p[k], b)); if(!f || bittest(d, k), self()(k+1, b)) + if(f, self()(k+1, b+(1<Andrew Howroyd, Aug 27 2019

Extensions

Terms a(16) and beyond from Andrew Howroyd, Aug 27 2019
Showing 1-10 of 21 results. Next