cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A237984 Number of partitions of n whose mean is a part.

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 2, 6, 5, 8, 2, 21, 2, 14, 22, 30, 2, 61, 2, 86, 67, 45, 2, 283, 66, 80, 197, 340, 2, 766, 2, 663, 543, 234, 703, 2532, 2, 388, 1395, 4029, 2, 4688, 2, 4476, 7032, 1005, 2, 17883, 2434, 9713, 7684, 14472, 2, 25348, 17562, 37829, 16786, 3721
Offset: 1

Views

Author

Clark Kimberling, Feb 27 2014

Keywords

Comments

a(n) = 2 if and only if n is a prime.

Examples

			a(6) counts these partitions:  6, 33, 321, 222, 111111.
From _Gus Wiseman_, Sep 14 2019: (Start)
The a(1) = 1 through a(10) = 8 partitions (A = 10):
  1  2   3    4     5      6       7        8         9          A
     11  111  22    11111  33      1111111  44        333        55
              1111         222              2222      432        22222
                           321              3221      531        32221
                           111111           4211      111111111  33211
                                            11111111             42211
                                                                 52111
                                                                 1111111111
(End)
		

Crossrefs

Cf. A238478.
The Heinz numbers of these partitions are A327473.
A similar sequence for subsets is A065795.
Dominated by A067538.
The strict case is A240850.
Partitions without their mean are A327472.

Programs

  • Mathematica
    Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, Mean[p]]], {n, 40}]
  • Python
    from sympy.utilities.iterables import partitions
    def A237984(n): return sum(1 for s,p in partitions(n,size=True) if not n%s and n//s in p) # Chai Wah Wu, Sep 21 2023

Formula

a(n) = A000041(n) - A327472(n). - Gus Wiseman, Sep 14 2019

A327473 Heinz numbers of integer partitions whose mean A326567/A326568 is a part.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 30, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 84, 89, 90, 97, 101, 103, 105, 107, 109, 110, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181
Offset: 1

Views

Author

Gus Wiseman, Sep 13 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   7: {4}
   8: {1,1,1}
   9: {2,2}
  11: {5}
  13: {6}
  16: {1,1,1,1}
  17: {7}
  19: {8}
  23: {9}
  25: {3,3}
  27: {2,2,2}
  29: {10}
  30: {1,2,3}
  31: {11}
  32: {1,1,1,1,1}
  37: {12}
		

Crossrefs

A subsequence of A316413.
Complement of A327476.
The enumeration of these partitions by sum is given by A237984.
Subsets whose mean is a part are A065795.
Numbers whose binary indices include their mean are A327478.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],MemberQ[primeMS[#],Mean[primeMS[#]]]&]

A000016 a(n) is the number of distinct (infinite) output sequences from binary n-stage shift register which feeds back the complement of the last stage.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 6, 10, 16, 30, 52, 94, 172, 316, 586, 1096, 2048, 3856, 7286, 13798, 26216, 49940, 95326, 182362, 349536, 671092, 1290556, 2485534, 4793492, 9256396, 17895736, 34636834, 67108864, 130150588, 252645136, 490853416
Offset: 0

Views

Author

Keywords

Comments

Also a(n+1) = number of distinct (infinite) output sequences from binary n-stage shift register which feeds back the complement of the sum of its contents. E.g., for n=5 there are 6 such sequences.
Also a(n+1) = number of binary vectors (x_1,...x_n) satisfying Sum_{i=1..n} i*x_i = 0 (mod n+1) = size of Varshamov-Tenengolts code VT_0(n). E.g., |VT_0(5)| = 6 = a(6).
Number of binary necklaces with an odd number of zeros. - Joerg Arndt, Oct 26 2015
Also, number of subsets of {1,2,...,n-1} which sum to 0 modulo n (cf. A063776). - Max Alekseyev, Mar 26 2016
From Gus Wiseman, Sep 14 2019: (Start)
Also the number of subsets of {1..n} containing n whose mean is an element. For example, the a(1) = 1 through a(8) = 16 subsets are:
1 2 3 4 5 6 7 8
123 234 135 246 147 258
345 456 357 468
12345 1236 567 678
1456 2347 1348
23456 2567 1568
12467 3458
13457 3678
34567 12458
1234567 14578
23578
24568
45678
123468
135678
2345678
(End)
Number of self-dual binary necklaces with 2n beads (cf. A263768, A007147). - Bernd Mulansky, Apr 25 2023

Examples

			For n=3 the 2 output sequences are 000111000111... and 010101...
For n=5 the 4 output sequences are those with periodic parts {0000011111, 0001011101, 0010011011, 01}.
For n=6 there are 6 such sequences.
		

References

  • B. D. Ginsburg, On a number theory function applicable in coding theory, Problemy Kibernetiki, No. 19 (1967), pp. 249-252.
  • S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967, p. 172.
  • J. Hedetniemi and K. R. Hutson, Equilibrium of shortest path load in ring network, Congressus Numerant., 203 (2010), 75-95. See p. 83.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane, On single-deletion-correcting codes, in Codes and Designs (Columbus, OH, 2000), 273-291, Ohio State Univ. Math. Res. Inst. Publ., 10, de Gruyter, Berlin, 2002.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • D. Stoffer, Delay equations with rapidly oscillating stable periodic solutions, J. Dyn. Diff. Eqs. 20 (1) (2008) 201, eq. (39)

Crossrefs

The main diagonal of table A068009, the left edge of triangle A053633.
Subsets whose mean is an element are A065795.
Dominated by A082550.
Partitions containing their mean are A237984.
Subsets containing n but not their mean are A327477.

Programs

  • Haskell
    a000016 0 = 1
    a000016 n = (`div` (2 * n)) $ sum $
       zipWith (*) (map a000010 oddDivs) (map ((2 ^) . (div n)) $ oddDivs)
       where oddDivs = a182469_row n
    -- Reinhard Zumkeller, May 01 2012
    
  • Maple
    A000016 := proc(n) local d, t; if n = 0 then return 1 else t := 0; for d from 1 to n do if n mod d = 0 and d mod 2 = 1 then t := t + NumberTheory:-Totient(d)* 2^(n/d)/(2*n) fi od; return t fi end:
  • Mathematica
    a[0] = 1; a[n_] := Sum[Mod[k, 2] EulerPhi[k]*2^(n/k)/(2*n), {k, Divisors[n]}]; Table[a[n], {n, 0, 35}](* Jean-François Alcover, Feb 17 2012, after Pari *)
  • PARI
    a(n)=if(n<1,n >= 0,sumdiv(n,k,(k%2)*eulerphi(k)*2^(n/k))/(2*n));
    
  • Python
    from sympy import totient, divisors
    def A000016(n): return sum(totient(d)<>(~n&n-1).bit_length(),generator=True))//n if n else 1 # Chai Wah Wu, Feb 21 2023

Formula

a(n) = Sum_{odd d divides n} (phi(d)*2^(n/d))/(2*n), n>0.
a(n) = A063776(n)/2.
a(n) = 2^(n-1) - A327477(n). - Gus Wiseman, Sep 14 2019

Extensions

More terms from Michael Somos, Dec 11 1999

A327475 Number of subsets of {1..n} whose mean is an integer, where {} has mean 0.

Original entry on oeis.org

1, 2, 3, 6, 9, 16, 27, 46, 77, 136, 239, 426, 769, 1400, 2571, 4762, 8857, 16568, 31139, 58734, 111165, 211044, 401695, 766418, 1465489, 2807672, 5388783, 10359850, 19946833, 38459624, 74251095, 143524762, 277742489, 538043664, 1043333935, 2025040766, 3933915349
Offset: 0

Views

Author

Gus Wiseman, Sep 13 2019

Keywords

Examples

			The a(0) = 1 through a(5) = 16 subsets:
  {}  {}   {}   {}       {}       {}
      {1}  {1}  {1}      {1}      {1}
           {2}  {2}      {2}      {2}
                {3}      {3}      {3}
                {1,3}    {4}      {4}
                {1,2,3}  {1,3}    {5}
                         {2,4}    {1,3}
                         {1,2,3}  {1,5}
                         {2,3,4}  {2,4}
                                  {3,5}
                                  {1,2,3}
                                  {1,3,5}
                                  {2,3,4}
                                  {3,4,5}
                                  {1,2,4,5}
                                  {1,2,3,4,5}
		

Crossrefs

If the subset is required to contain n, we get A063776.

Programs

  • Maple
    with(numtheory):
    b:= n-> add(2^(n/d)*phi(d), d=select(x-> x::odd, divisors(n)))/n:
    a:= proc(n) option remember; `if`(n=0, 1, b(n)-1+a(n-1)) end:
    seq(a(n), n=0..36);  # Alois P. Heinz, Jan 13 2024
  • Mathematica
    Table[Length[Select[Subsets[Range[n]],#=={}||IntegerQ[Mean[#]]&]],{n,0,10}]
  • Python
    from sympy import totient, divisors
    def A327475(n): return sum((sum(totient(d)<>(~k&k-1).bit_length(),generator=True))<<1)//k for k in range(1,n+1))-n+1 # Chai Wah Wu, Feb 22 2023

Formula

a(n) = A051293(n) + 1.

A327481 Triangle read by rows where T(n,k) is the number of nonempty subsets of {1..n} with mean k.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 3, 3, 1, 1, 3, 7, 3, 1, 1, 3, 9, 9, 3, 1, 1, 3, 9, 19, 9, 3, 1, 1, 3, 9, 25, 25, 9, 3, 1, 1, 3, 9, 29, 51, 29, 9, 3, 1, 1, 3, 9, 31, 75, 75, 31, 9, 3, 1, 1, 3, 9, 31, 93, 151, 93, 31, 9, 3, 1, 1, 3, 9, 31, 105, 235, 235, 105, 31, 9, 3, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 13 2019

Keywords

Comments

All terms are odd.

Examples

			Triangle begins:
                         1
                       1   1
                     1   3   1
                   1   3   3   1
                 1   3   7   3   1
               1   3   9   9   3   1
             1   3   9  19   9   3   1
           1   3   9  25  25   9   3   1
         1   3   9  29  51  29   9   3   1
       1   3   9  31  75  75  31   9   3   1
     1   3   9  31  93 151  93  31   9   3   1
   1   3   9  31 105 235 235 105  31   9   3   1
The subsets counted in row n = 5:
  {1}  {2}      {3}          {4}      {5}
       {1,3}    {1,5}        {3,5}
       {1,2,3}  {2,4}        {3,4,5}
                {1,3,5}
                {2,3,4}
                {1,2,4,5}
                {1,2,3,4,5}
		

Crossrefs

Row sums are A051293.
The sequence of rows converges to A066571.
The version for partitions is A327482.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Mean[#]==k&]],{n,10},{k,n}]

A063776 Number of subsets of {1,2,...,n} which sum to 0 modulo n.

Original entry on oeis.org

2, 2, 4, 4, 8, 12, 20, 32, 60, 104, 188, 344, 632, 1172, 2192, 4096, 7712, 14572, 27596, 52432, 99880, 190652, 364724, 699072, 1342184, 2581112, 4971068, 9586984, 18512792, 35791472, 69273668, 134217728, 260301176, 505290272, 981706832
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Aug 16 2001

Keywords

Comments

From Gus Wiseman, Sep 14 2019: (Start)
Also the number of subsets of {1..n} that are empty or contain n and have integer mean. If the subsets are not required to contain n, we get A327475. For example, the a(1) = 2 through a(6) = 12 subsets are:
{} {} {} {} {} {}
{1} {2} {3} {4} {5} {6}
{1,3} {2,4} {1,5} {2,6}
{1,2,3} {2,3,4} {3,5} {4,6}
{1,3,5} {1,2,6}
{3,4,5} {1,5,6}
{1,2,4,5} {2,4,6}
{1,2,3,4,5} {4,5,6}
{1,2,3,6}
{1,4,5,6}
{2,3,5,6}
{2,3,4,5,6}
(End)

Examples

			G.f. = 2*x + 2*x^2 + 4*x^3 + 4*x^4 + 8*x^5 + 12*x^6 + 20*x^7 + 32*x^8 + 60*x^9 + ...
		

Crossrefs

Programs

  • Haskell
    a063776 n = a053636 n `div` n  -- Reinhard Zumkeller, Sep 13 2013
    
  • Mathematica
    Table[a = Select[ Divisors[n], OddQ[ # ] &]; Apply[Plus, 2^(n/a)*EulerPhi[a]]/n, {n, 1, 35}]
    a[ n_] := If[ n < 1, 0, 1/n Sum[ Mod[ d, 2] EulerPhi[ d] 2^(n / d), {d, Divisors[ n]}]]; (* Michael Somos, May 09 2013 *)
    Table[Length[Select[Subsets[Range[n]],#=={}||MemberQ[#,n]&&IntegerQ[Mean[#]]&]],{n,0,10}] (* Gus Wiseman, Sep 14 2019 *)
  • PARI
    {a(n) = if( n<1, 0, 1 / n * sumdiv( n, d, (d % 2) * eulerphi(d) * 2^(n / d)))}; /* Michael Somos, May 09 2013 */
    
  • PARI
    a(n) = sumdiv(n, d, (d%2)* 2^(n/d)*eulerphi(d))/n; \\ Michel Marcus, Feb 10 2016
    
  • Python
    from sympy import totient, divisors
    def A063776(n): return (sum(totient(d)<>(~n&n-1).bit_length(),generator=True))<<1)//n # Chai Wah Wu, Feb 21 2023

Formula

a(n) = (1/n) * Sum_{d divides n and d is odd} 2^(n/d) * phi(d).
a(n) = (1/n) * A053636(n). - Michael Somos, May 09 2013
a(n) = 2 * A000016(n).
For odd n, a(n) = A000031(n).
G.f.: -Sum_{m >= 0} (phi(2*m + 1)/(2*m + 1)) * log(1 - 2*x^(2*m + 1)). - Petros Hadjicostas, Jul 13 2019
a(n) = A082550(n) + 1. - Gus Wiseman, Sep 14 2019

Extensions

More terms from Vladeta Jovovic, Aug 20 2001

A359897 Number of strict integer partitions of n whose parts have the same mean as median.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 4, 4, 4, 7, 6, 6, 10, 7, 10, 13, 11, 9, 20, 10, 20, 18, 21, 12, 30, 24, 28, 27, 30, 15, 73, 16, 37, 43, 45, 67, 74, 19, 55, 71, 126, 21, 150, 22, 75, 225, 78, 24, 183, 126, 245, 192, 132, 27, 284, 244, 403, 303, 120, 30, 828
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2023

Keywords

Examples

			The a(1) = 1 through a(9) = 7 partitions:
  (1)  (2)  (3)    (4)    (5)    (6)      (7)    (8)    (9)
            (2,1)  (3,1)  (3,2)  (4,2)    (4,3)  (5,3)  (5,4)
                          (4,1)  (5,1)    (5,2)  (6,2)  (6,3)
                                 (3,2,1)  (6,1)  (7,1)  (7,2)
                                                        (8,1)
                                                        (4,3,2)
                                                        (5,3,1)
		

Crossrefs

The non-strict version is A240219, complement A359894, ranked by A359889.
The complement is counted by A359898.
The odd-length case is A359899, complement A359900.
A000041 counts partitions, strict A000009.
A008284/A058398/A327482 count partitions by mean, ranked by A326567/A326568.
A008289 counts strict partitions by mean.
A237984 counts partitions containing their mean, complement A327472.
A240850 counts strict partitions containing their mean, complement A240851.
A325347 counts ptns with integer median, strict A359907, ranked by A359908.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Mean[#]==Median[#]&]],{n,0,30}]

A359899 Number of strict odd-length integer partitions of n whose parts have the same mean as median.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 4, 1, 1, 6, 1, 1, 6, 1, 5, 7, 1, 1, 8, 12, 1, 9, 2, 1, 33, 1, 1, 11, 1, 50, 12, 1, 1, 13, 70, 1, 46, 1, 1, 122, 1, 1, 16, 102, 155, 17, 1, 1, 30, 216, 258, 19, 1, 1, 310, 1, 1, 666, 1, 382, 23, 1, 1, 23, 1596, 1, 393, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2023

Keywords

Examples

			The a(30) = 33 partitions:
  (30)  (11,10,9)  (8,7,6,5,4)
        (12,10,8)  (9,7,6,5,3)
        (13,10,7)  (9,8,6,4,3)
        (14,10,6)  (9,8,6,5,2)
        (15,10,5)  (10,7,6,4,3)
        (16,10,4)  (10,7,6,5,2)
        (17,10,3)  (10,8,6,4,2)
        (18,10,2)  (10,8,6,5,1)
        (19,10,1)  (10,9,6,3,2)
                   (10,9,6,4,1)
                   (11,7,6,4,2)
                   (11,7,6,5,1)
                   (11,8,6,3,2)
                   (11,8,6,4,1)
                   (11,9,6,3,1)
                   (12,7,6,3,2)
                   (12,7,6,4,1)
                   (12,8,6,3,1)
                   (12,9,6,2,1)
                   (13,7,6,3,1)
                   (13,8,6,2,1)
                   (14,7,6,2,1)
                   (11,10,6,2,1)
		

Crossrefs

Strict odd-length case of A240219, complement A359894, ranked by A359889.
Strict case of A359895, complement A359896, ranked by A359891.
Odd-length case of A359897, complement A359898.
The complement is counted by A359900.
A000041 counts partitions, strict A000009.
A008284/A058398/A327482 count partitions by mean, ranked by A326567/A326568.
A008289 counts strict partitions by mean.
A027193 counts odd-length partitions, strict A067659, ranked by A026424.
A067538 counts ptns with integer mean, strict A102627, ranked by A316413.
A237984 counts ptns containing their mean, strict A240850, ranked by A327473.
A325347 counts ptns with integer median, strict A359907, ranked by A359908.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&OddQ[Length[#]]&&Mean[#]==Median[#]&]],{n,0,30}]
  • PARI
    \\ Q(n,k,m) is g.f. for k strict parts of max size m.
    Q(n,k,m)={polcoef(prod(i=1, m, 1 + y*x^i + O(x*x^n)), k, y)}
    a(n)={if(n==0, 0, sumdiv(n, d, if(d%2, my(m=n/d, h=d\2, r=n-m*(h+1)); if(r>=h*(h+1), polcoef(Q(r, h, m-1)*Q(r, h, r), r)))))} \\ Andrew Howroyd, Jan 21 2023

Formula

a(p) = 1 for prime p. - Andrew Howroyd, Jan 21 2023

A359900 Number of strict odd-length integer partitions of n whose parts do not have the same mean as median.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 4, 5, 4, 8, 10, 8, 15, 18, 17, 26, 27, 31, 43, 51, 53, 59, 81, 87, 109, 127, 115, 169, 194, 213, 255, 243, 322, 379, 431, 478, 487, 629, 667, 804, 907, 902, 1151, 1294, 1439, 1530, 1674, 2031, 2290, 2559, 2829, 2973, 3296, 3939
Offset: 0

Views

Author

Gus Wiseman, Jan 21 2023

Keywords

Examples

			The a(7) = 1 through a(16) = 15 partitions (A=10, B=11, C=12, D=13):
  (421)  (431)  (621)  (532)  (542)  (651)  (643)  (653)  (762)  (754)
         (521)         (541)  (632)  (732)  (652)  (743)  (843)  (763)
                       (631)  (641)  (831)  (742)  (752)  (861)  (853)
                       (721)  (731)  (921)  (751)  (761)  (942)  (862)
                              (821)         (832)  (842)  (A32)  (871)
                                            (841)  (851)  (A41)  (943)
                                            (931)  (932)  (B31)  (952)
                                            (A21)  (941)  (C21)  (961)
                                                   (A31)         (A42)
                                                   (B21)         (A51)
                                                                 (B32)
                                                                 (B41)
                                                                 (C31)
                                                                 (D21)
                                                                 (64321)
		

Crossrefs

This is the strict case of A359896, complement A359895, ranked by A359892.
This is the odd-length case of A359898, complement A359897.
The complement is counted by A359899.
A000041 counts partitions, strict A000009.
A008284/A058398/A327482 count partitions by mean, ranked by A326567/A326568.
A008289 counts strict partitions by mean.
A027193 counts odd-length partitions, strict A067659, ranked by A026424.
A359893/A359901/A359902 count partitions by median, ranked by A360005.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&OddQ[Length[#]]&&Mean[#]!=Median[#]&]],{n,0,30}]

A359898 Number of strict integer partitions of n whose parts do not have the same mean as median.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 4, 6, 5, 11, 12, 14, 21, 29, 26, 44, 44, 58, 68, 92, 92, 118, 137, 165, 192, 241, 223, 324, 353, 405, 467, 518, 594, 741, 809, 911, 987, 1239, 1276, 1588, 1741, 1823, 2226, 2566, 2727, 3138, 3413, 3905, 4450, 5093, 5434, 6134
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2023

Keywords

Examples

			The a(7) = 1 through a(13) = 11 partitions:
  (4,2,1)  (4,3,1)  (6,2,1)  (5,3,2)  (5,4,2)    (6,5,1)    (6,4,3)
           (5,2,1)           (5,4,1)  (6,3,2)    (7,3,2)    (6,5,2)
                             (6,3,1)  (6,4,1)    (8,3,1)    (7,4,2)
                             (7,2,1)  (7,3,1)    (9,2,1)    (7,5,1)
                                      (8,2,1)    (6,3,2,1)  (8,3,2)
                                      (5,3,2,1)             (8,4,1)
                                                            (9,3,1)
                                                            (10,2,1)
                                                            (5,4,3,1)
                                                            (6,4,2,1)
                                                            (7,3,2,1)
		

Crossrefs

The non-strict version is ranked by A359890, complement A359889.
The non-strict version is A359894, complement A240219.
The complement is counted by A359897.
The odd-length case is A359900, complement A359899.
A000041 counts partitions, strict A000009.
A008284/A058398/A327482 count partitions by mean, ranked by A326567/A326568.
A008289 counts strict partitions by mean.
A067538 counts ptns with integer mean, strict A102627, ranked by A316413.
A237984 counts ptns containing their mean, strict A240850, ranked by A327473.
A325347 counts ptns with integer median, strict A359907, ranked by A359908.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Mean[#]!=Median[#]&]],{n,0,30}]
Showing 1-10 of 14 results. Next