cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 37 results. Next

A000975 a(2n) = 2*a(2n-1), a(2n+1) = 2*a(2n)+1 (also a(n) is the n-th number without consecutive equal binary digits).

Original entry on oeis.org

0, 1, 2, 5, 10, 21, 42, 85, 170, 341, 682, 1365, 2730, 5461, 10922, 21845, 43690, 87381, 174762, 349525, 699050, 1398101, 2796202, 5592405, 11184810, 22369621, 44739242, 89478485, 178956970, 357913941, 715827882, 1431655765, 2863311530, 5726623061, 11453246122
Offset: 0

Views

Author

Keywords

Comments

Might be called the "Lichtenberg sequence" after Georg Christoph Lichtenberg, who discussed it in 1769 in connection with the Chinese Rings puzzle (baguenaudier). - Andreas M. Hinz, Feb 15 2017
Number of steps to change from a binary string of n 0's to n 1's using a Gray code. - Jon Stadler (jstadler(AT)coastal.edu)
Popular puzzles such as Spin-Out and The Brain Puzzler are based on the Gray binary system and require a(n) steps to complete for some number n.
Conjecture: {a(n)} also gives all j for which A048702(j) = A000217(j); i.e., if we take the a(n)-th triangular number (a(n)^2 + a(n))/2 and multiply it by 3, we get a(n)-th even-length binary palindrome A048701(a(n)) concatenated from a(n) and its reverse. E.g., a(4) = 10, which is 1010 in binary; the tenth triangular number is 55, and 55*3 = 165 = 10100101 in binary. - Antti Karttunen, circa 1999. (This has been now proved by Paul K. Stockmeyer in his arXiv:1608.08245 paper.) - Antti Karttunen, Aug 31 2016
Number of ways to tie a tie of n or fewer half turns, excluding mirror images. Also number of walks of length n or less on a triangular lattice with the following restrictions; given l, r and c as the lattice axes. 1. All steps are taken in the positive axis direction. 2. No two consecutive steps are taken on the same axis. 3. All walks begin with l. 4. All walks end with rlc or lrc. - Bill Blewett, Dec 21 2000
a(n) is the minimal number of vertices to be selected in a vertex-cover of the balanced tree B_n. - Sen-peng Eu, Jun 15 2002
A087117(a(n)) = A038374(a(n)) = 1 for n > 1; see also A090050. - Reinhard Zumkeller, Nov 20 2003
Intersection of A003754 and A003714; complement of A107907. - Reinhard Zumkeller, May 28 2005
Equivalently, numbers m whose binary representation is effectively, for some number k, both the lazy Fibonacci and the Zeckendorf representation of k (in which case k = A022290(m)). - Peter Munn, Oct 06 2022
a(n+1) gives row sums of Riordan array (1/(1-x), x(1+2x)). - Paul Barry, Jul 18 2005
Total number of initial 01's in all binary words of length n+1. Example: a(3) = 5 because the binary words of length 4 that start with 01 are (01)00, (01)(01), (01)10 and (01)11 and the total number of initial 01's is 5 (shown between parentheses). a(n) = Sum_{k >= 0} k*A119440(n+1, k). - Emeric Deutsch, May 19 2006
In Norway we call the 10-ring puzzle "strikketoy" or "knitwear" (see link). It takes 682 moves to free the two parts. - Hans Isdahl, Jan 07 2008
Equals A002450 and A020988 interlaced. - Zak Seidov, Feb 10 2008
For n > 1, let B_n = the complete binary tree with vertex set V where |V| = 2^n - 1. If VC is a minimum-size vertex cover of B_n, Sen-Peng Eu points out that a(n) = |VC|. It also follows that if IS = V\VC, a(n+1) = |IS|. - K.V.Iyer, Apr 13 2009
Starting with 1 and convolved with [1, 2, 2, 2, ...] = A000295. - Gary W. Adamson, Jun 02 2009
a(n) written in base 2 is sequence A056830(n). - Jaroslav Krizek, Aug 05 2009
This is the sequence A(0, 1; 1, 2; 1) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
From Vladimir Shevelev, Jan 30 2012, Feb 13 2012: (Start)
1) Denote by {n, k} the number of permutations of 1, ..., n with the up-down index k (for definition, see comment in A203827). Then max_k{n, k} = {n, a(n)} = A000111(n).
2) a(n) is the minimal number > a(n-1) with the Hamming distance d_H(a(n-1), a(n)) = n. Thus this sequence is the Hamming analog of triangular numbers 0, 1, 3, 6, 10, ... (End)
From Hieronymus Fischer, Nov 22 2012: (Start)
Represented in binary form each term after the second one contains every previous term as a substring.
The terms a(2) = 2 and a(3) = 5 are the only primes. Proof: For even n we get a(n) = 2*(2^(2*n) - 1)/3, which shows that a(n) is even, too, and obviously a(n) > 2 for all even n > 2. For odd n we have a(n) = (2^(n+1) - 1)/3 = (2^((n+1)/2) - 1) * (2^((n+1)/2) + 1)/3. Evidently, at least one of these factors is divisible by 3, both are greater than 6, provided n > 3. Hence it follows that a(n) is composite for all odd n > 3.
Represented as a binary number, a(n+1) has exactly n prime substrings. Proof: Evidently, a(1) = 1_2 has zero and a(2) = 10_2 has 1 prime substring. Let n > 1. Written in binary, a(n+1) is 101010101...01 (if n + 1 is odd) and is 101010101...10 (if n + 1 is even) with n + 1 digits. Only the 2- and 3-digits substrings 10_2 (=2) and 101_2 (=5) are prime substrings. All the other substrings are nonprime since every substring is a previous term and all terms unequal to 2 and 5 are nonprime. For even n + 1, the number of prime substrings equal to 2 = 10_2 is (n+1)/2, and the number of prime substrings equal to 5 = 101_2 is (n-1)/2, makes a sum of n. For odd n + 1 we get n/2 for both, the number of 2's and 5's prime substrings, in any case, the sum is n. (End)
Number of different 3-colorings for the vertices of all triangulated planar polygons on a base with n+2 vertices if the colors of the two base vertices are fixed. - Patrick Labarque, Feb 09 2013
A090079(a(n)) = a(n) and A090079(m) <> a(n) for m < a(n). - Reinhard Zumkeller, Feb 16 2013
a(n) is the number of length n binary words containing at least one 1 and ending in an even number (possibly zero) of 0's. a(3) = 5 because we have: 001, 011, 100, 101, 111. - Geoffrey Critzer, Dec 15 2013
a(n) is the number of permutations of length n+1 having exactly one descent such that the first element of the permutation is an even number. - Ran Pan, Apr 18 2015
a(n) is the sequence of the last row of the Hadamard matrix H(2^n) obtained via Sylvester's construction: H(2) = [1,1;1,-1], H(2^n) = H(2^(n-1))*H(2), where * is the Kronecker product. - William P. Orrick, Jun 28 2015
Conjectured record values of A264784: a(n) = A264784(A155051(n-1)). - Reinhard Zumkeller, Dec 04 2015. (This is proved by Paul K. Stockmeyer in his arXiv:1608.08245 paper.) - Antti Karttunen, Aug 31 2016
Decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 131", based on the 5-celled von Neumann neighborhood. See A279053 for references and links. - Robert Price, Dec 05 2016
For n > 4, a(n-2) is the second-largest number in row n of A127824. - Dmitry Kamenetsky, Feb 11 2017
Conjecture: a(n+1) is the number of compositions of n with two kinds of parts, n and n', where the order of the 1 and 1' does not matter. For n=2, a(3) = 5 compositions, enumerated as follows: 2; 2'; 1,1; 1',1 = 1',1; 1',1'. - Gregory L. Simay, Sep 02 2017
Conjecture proved by recognizing the appropriate g.f. is x/(1 - x)(1 - x)(1 - 2*x^2 - 2x^3 - ...) = x/(1 - 2*x - x^2 + 2x^3). - Gregory L. Simay, Sep 10 2017
a(n) = 2^(n-1) + 2^(n-3) + 2^(n-5) + ... a(2*k -1) = A002450(k) is the sum of the powers of 4. a(2*k) = 2*A002450(k). - Gregory L. Simay, Sep 27 2017
a(2*n) = n times the string [10] in binary representation, a(2*n+1) = n times the string [10] followed with [1] in binary representation. Example: a(7) = 85 = (1010101) in binary, a(8) = 170 = (10101010) in binary. - Ctibor O. Zizka, Nov 06 2018
Except for 0, these are the positive integers whose binary expansion has cuts-resistance 1. For the operation of shortening all runs by 1, cuts-resistance is the number of applications required to reach an empty word. Cuts-resistance 2 is A329862. - Gus Wiseman, Nov 27 2019
From Markus Sigg, Sep 14 2020: (Start)
Let s(k) be the length of the Collatz orbit of k, e.g. s(1) = 1, s(2) = 2, s(3) = 5. Then s(a(n)) = n+3 for n >= 3. Proof by induction: s(a(3)) = s(5) = 6 = 3+3. For odd n >= 5 we have s(a(n)) = s(4*a(n-2)+1) = s(12*a(n-2)+4)+1 = s(3*a(n-2)+1)+3 = s(a(n-2))+2 = (n-2)+3+2 = n+3, and for even n >= 4 this gives s(a(n)) = s(2*a(n-1)) = s(a(n-1))+1 = (n-1)+3+1 = n+3.
Conjecture: For n >= 3, a(n) is the second largest natural number whose Collatz orbit has length n+3. (End)
From Gary W. Adamson, May 14 2021: (Start)
With offset 1 the sequence equals the numbers of 1's from n = 1 to 3, 3 to 7, 7 to 15, ...; of A035263; as shown below:
..1 3 7 15...
..1 0 1 1 1 0 1 0 1 0 1 1 1 0 1...
..1.....2...........5......................10...; a(n) = Sum_(k=1..2n-1)A035263(k)
.....1...........2.......................5...; as to zeros.
..1's in the Tower of Hanoi game represent CW moves On disks in the pattern:
..0, 1, 2, 0, 1, 2, ... whereas even numbered disks move in the pattern:
..0, 2, 1, 0, 2, 1, ... (End)
Except for 0, numbers that are repunits in Gray-code representation (A014550). - Amiram Eldar, May 21 2021
From Gus Wiseman, Apr 20 2023: (Start)
Also the number of nonempty subsets of {1..n} with integer median, where the median of a multiset is the middle part in the odd-length case, and the average of the two middle parts in the even-length case. For example, the a(1) = 1 through a(4) = 10 subsets are:
{1} {1} {1} {1}
{2} {2} {2}
{3} {3}
{1,3} {4}
{1,2,3} {1,3}
{2,4}
{1,2,3}
{1,2,4}
{1,3,4}
{2,3,4}
The complement is counted by A005578.
For mean instead of median we have A051293, counting empty sets A327475.
For normal multisets we have A056450, strongly normal A361202.
For partitions we have A325347, strict A359907, complement A307683.
(End)

Examples

			a(4)=10 since 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111 are the 10 binary strings switching 0000 to 1111.
a(3) = 1 because "lrc" is the only way to tie a tie with 3 half turns, namely, pass the business end of the tie behind the standing part to the left, bring across the front to the right, then behind to the center. The final motion of tucking the loose end down the front behind the "lr" piece is not considered a "step".
a(4) = 2 because "lrlc" is the only way to tie a tie with 4 half turns. Note that since the number of moves is even, the first step is to go to the left in front of the tie, not behind it. This knot is the standard "four in hand", the most commonly known men's tie knot. By contrast, the second most well known tie knot, the Windsor, is represented by "lcrlcrlc".
a(n) = (2^0 - 1) XOR (2^1 - 1) XOR (2^2 - 1) XOR (2^3 - 1) XOR ... XOR (2^n - 1). - _Paul D. Hanna_, Nov 05 2011
G.f. = x + 2*x^2 + 5*x^3 + 10*x^4 + 21*x^5 + 42*x^6 + 85*x^7 + 170*x^8 + ...
a(9) = 341 = 2^8 + 2^6 + 2^4 + 2^2 + 2^0 = 4^4 + 4^3 + 4^2 + 4^1 + 4^0 = A002450(5). a(10) = 682 = 2*a(9) = 2*A002450(5). - _Gregory L. Simay_, Sep 27 2017
		

References

  • Thomas Fink and Yong Mao, The 85 Ways to Tie a Tie, Broadway Books, New York (1999), p. 138.
  • Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009.

Crossrefs

Partial sums of A001045.
Row sums of triangle A013580.
Equals A026644/2.
Union of the bijections A002450 and A020988. - Robert G. Wilson v, Jun 09 2014
Column k=3 of A261139.
Complement of A107907.
Row 3 of A300653.
Other sequences that relate to the binary representation of the terms: A003714, A003754, A007088, A022290, A056830, A104161, A107909.

Programs

  • GAP
    List([0..35],n->(2^(n+1)-2+(n mod 2))/3); # Muniru A Asiru, Nov 01 2018
    
  • Haskell
    a000975 n = a000975_list !! n
    a000975_list = 0 : 1 : map (+ 1)
       (zipWith (+) (tail a000975_list) (map (* 2) a000975_list))
    -- Reinhard Zumkeller, Mar 07 2012
    
  • Magma
    [(2^(n+1) - 2 + (n mod 2))/3: n in [0..40]]; // Vincenzo Librandi, Mar 18 2015
    
  • Maple
    A000975 := proc(n) option remember; if n <= 1 then n else if n mod 2 = 0 then 2*A000975(n-1) else 2*A000975(n-1)+1 fi; fi; end;
    seq(iquo(2^n,3),n=1..33); # Zerinvary Lajos, Apr 20 2008
    f:=n-> if n mod 2 = 0 then (2^n-1)/3 else (2^n-2)/3; fi; [seq(f(n),n=0..40)]; # N. J. A. Sloane, Mar 21 2017
  • Mathematica
    Array[Ceiling[2(2^# - 1)/3] &, 41, 0]
    RecurrenceTable[{a[0] == 0, a[1] == 1, a[n] == a[n - 1] + 2a[n - 2] + 1}, a, {n, 40}] (* or *)
    LinearRecurrence[{2, 1, -2}, {0, 1, 2}, 40] (* Harvey P. Dale, Aug 10 2013 *)
    f[n_] := Block[{exp = n - 2}, Sum[2^i, {i, exp, 0, -2}]]; Array[f, 33] (* Robert G. Wilson v, Oct 30 2015 *)
    f[s_List] := Block[{a = s[[-1]]}, Append[s, If[OddQ@ Length@ s, 2a + 1, 2a]]]; Nest[f, {0}, 32] (* Robert G. Wilson v, Jul 20 2017 *)
    NestList[2# + Boole[EvenQ[#]] &, 0, 39] (* Alonso del Arte, Sep 21 2018 *)
  • PARI
    {a(n) = if( n<0, 0, 2 * 2^n \ 3)}; /* Michael Somos, Sep 04 2006 */
    
  • PARI
    a(n)=if(n<=0,0,bitxor(a(n-1),2^n-1)) \\ Paul D. Hanna, Nov 05 2011
    
  • PARI
    concat(0, Vec(x/(1-2*x-x^2+2*x^3) + O(x^100))) \\ Altug Alkan, Oct 30 2015
    
  • PARI
    {a(n) = (4*2^n - 3 - (-1)^n) / 6}; /* Michael Somos, Jul 23 2017 */
    
  • Python
    def a(n): return (2**(n+1) - 2 + (n%2))//3
    print([a(n) for n in range(35)]) # Michael S. Branicky, Dec 19 2021

Formula

a(n) = ceiling(2*(2^n-1)/3).
Alternating sum transform (PSumSIGN) of {2^n - 1} (A000225).
a(n) = a(n-1) + 2*a(n-2) + 1.
a(n) = 2*2^n/3 - 1/2 - (-1)^n/6.
a(n) = Sum_{i = 0..n} A001045(i), partial sums of A001045. - Bill Blewett
a(n) = n + 2*Sum_{k = 1..n-2} a(k).
G.f.: x/((1+x)*(1-x)*(1-2*x)) = x/(1-2*x-x^2+2*x^3). - Paul Barry, Feb 11 2003
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3). - Paul Barry, Feb 11 2003
a(n) = Sum_{k = 0..floor((n-1)/2)} 2^(n-2*k-1). - Paul Barry, Nov 11 2003
a(n+1) = Sum_{k=0..floor(n/2)} 2^(n-2*k); a(n+1) = Sum_{k = 0..n} Sum_{j = 0..k} (-1)^(j+k)*2^j. - Paul Barry, Nov 12 2003
(-1)^(n+1)*a(n) = Sum_{i = 0..n} Sum_{k = 1..i} k!*k* Stirling2(i, k)*(-1)^(k-1) = (1/3)*(-2)^(n+1)-(1/6)(3*(-1)^(n+1)-1). - Mario Catalani (mario.catalani(AT)unito.it), Dec 22 2003
a(n+1) = (n!/3)*Sum_{i - (-1)^i + j = n, i = 0..n, j = 0..n} 1/(i - (-1)^i)!/j!. - Benoit Cloitre, May 24 2004
a(n) = A001045(n+1) - A059841(n). - Paul Barry, Jul 22 2004
a(n) = Sum_{k = 0..n} 2^(n-k-1)*(1-(-1)^k), row sums of A130125. - Paul Barry, Jul 28 2004
a(n) = Sum_{k = 0..n} binomial(k, n-k+1)2^(n-k); a(n) = Sum_{k = 0..floor(n/2)} binomial(n-k, k+1)2^k. - Paul Barry, Oct 07 2004
a(n) = A107909(A104161(n)); A007088(a(n)) = A056830(n). - Reinhard Zumkeller, May 28 2005
a(n) = floor(2^(n+1)/3) = ceiling(2^(n+1)/3) - 1 = A005578(n+1) - 1. - Paul Barry, Oct 08 2005
Convolution of "Number of fixed points in all 231-avoiding involutions in S_n." (A059570) with "1-n" (A024000), treating the result as if offset was 0. - Graeme McRae, Jul 12 2006
a(n) = A081254(n) - 2^n. - Philippe Deléham, Oct 15 2006
Starting (1, 2, 5, 10, 21, 42, ...), these are the row sums of triangle A135228. - Gary W. Adamson, Nov 23 2007
Let T = the 3 X 3 matrix [1,1,0; 1,0,1; 0,1,1]. Then T^n * [1,0,0] = [A005578(n), A001045(n), a(n-1)]. - Gary W. Adamson, Dec 25 2007
2^n = 2*A005578(n-1) + 2*A001045(n) + 2*a(n-2). - Gary W. Adamson, Dec 25 2007
If we define f(m,j,x) = Sum_{k=j..m} binomial(m,k)*stirling2(k,j)*x^(m-k) then a(n-3) = (-1)^(n-1)*f(n,3,-2), (n >= 3). - Milan Janjic, Apr 26 2009
a(n) + A001045(n) = A166920(n). a(n) + A001045(n+2) = A051049(n+1). - Paul Curtz, Oct 29 2009
a(n) = floor(A051049(n+1)/3). - Gary Detlefs, Dec 19 2010
a(n) = round((2^(n+2)-3)/6) = floor((2^(n+1)-1)/3) = round((2^(n+1)-2)/3); a(n) = a(n-2) + 2^(n-1), n > 1. - Mircea Merca, Dec 27 2010
a(n) = binary XOR of 2^k-1 for k=0..n. - Paul D. Hanna, Nov 05 2011
E.g.f.: 2/3*exp(2*x) - 1/2*exp(x) - 1/6*exp(-x) = 2/3*U(0); U(k) = 1 - 3/(4*(2^k) - 4*(2^k)/(1+3*(-1)^k - 24*x*(2^k)/(8*x*(2^k)*(-1)^k - (k+1)/U(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2011
Starting with "1" = triangle A059260 * [1, 2, 2, 2, ...] as a vector. - Gary W. Adamson, Mar 06 2012
a(n) = 2*(2^n - 1)/3, for even n; a(n) = (2^(n+1) - 1)/3 = (1/3)*(2^((n+1)/2) - 1)*(2^((n+1)/2) + 1), for odd n. - Hieronymus Fischer, Nov 22 2012
a(n) + a(n+1) = 2^(n+1) - 1. - Arie Bos, Apr 03 2013
G.f.: Q(0)/(3*(1-x)), where Q(k) = 1 - 1/(4^k - 2*x*16^k/(2*x*4^k - 1/(1 + 1/(2*4^k - 8*x*16^k/(4*x*4^k + 1/Q(k+1)))))); (continued fraction). - Sergei N. Gladkovskii, May 21 2013
floor(a(n+2)*3/5) = A077854(n), for n >= 0. - Armands Strazds, Sep 21 2014
a(n) = (2^(n+1) - 2 + (n mod 2))/3. - Paul Toms, Mar 18 2015
a(0) = 0, a(n) = 2*(a(n-1)) + (n mod 2). - Paul Toms, Mar 18 2015
Binary: a(n) = (a(n-1) shift left 1) + (a(n-1)) NOR (...11110). - Paul Toms, Mar 18 2015
Binary: for n > 1, a(n) = 2*a(n-1) OR a(n-2). - Stanislav Sykora, Nov 12 2015
a(n) = A266613(n) - 20*2^(n-5), for n > 2. - Andres Cicuttin, Mar 31 2016
From Michael Somos, Jul 23 2017: (Start)
a(n) = -(2^n)*a(-n) for even n; a(n) = -(2^(n+1))*a(-n) + 1 for odd n.
0 = +a(n)*(+2 +4*a(n) -4*a(n+1)) + a(n+1)*(-1 +a(n+1)) for all n in Z. (End)
G.f.: (x^1+x^3+x^5+x^7+...)/(1-2*x). - Gregory L. Simay, Sep 27 2017
a(n+1) = A051049(n) + A001045(n). - Yuchun Ji, Jul 12 2018
a(n) = A153772(n+3)/4. - Markus Sigg, Sep 14 2020
a(4*k+d) = 2^(d+1)*a(4*k-1) + a(d), a(n+4) = a(n) + 2^n*10, a(0..3) = [0,1,2,5]. So the last digit is always 0,1,2,5 repeated. - Yuchun Ji, May 22 2023

Extensions

Additional comments from Barry E. Williams, Jan 10 2000

A307683 Number of partitions of n having a non-integer median.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 4, 1, 7, 5, 11, 8, 18, 17, 31, 28, 47, 51, 75, 81, 119, 134, 181, 206, 277, 323, 420, 488, 623, 737, 922, 1084, 1352, 1597, 1960, 2313, 2819, 3330, 4029, 4743, 5704, 6722, 8030, 9434, 11234, 13175, 15601, 18262, 21552, 25184, 29612, 34518
Offset: 1

Views

Author

Clark Kimberling, Apr 24 2019

Keywords

Comments

This sequence and A325347 partition the partition numbers, A000041.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). - Gus Wiseman, Mar 16 2023

Examples

			a(7) counts these 4 partitions: [6,1], [5,2], [4,3], [3,2,1,1].
		

Crossrefs

The complement is counted by A325347, strict A359907.
For mean instead of median we have A349156, strict A361391.
These partitions have ranks A359912, complement A359908.
The strict case is A360952.
A000041 counts integer partitions, strict A000009.
A008284/A058398/A327482 count partitions by mean.
A359893/A359901/A359902 count partitions by median.

Programs

  • Mathematica
    Table[Count[IntegerPartitions[n], q_ /; !IntegerQ[Median[q]]], {n, 10}]

A359907 Number of strict integer partitions of n with integer median.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 4, 2, 6, 4, 9, 6, 14, 10, 18, 16, 27, 23, 36, 34, 51, 49, 67, 68, 94, 95, 122, 129, 166, 174, 217, 233, 287, 308, 371, 405, 487, 528, 622, 683, 805, 880, 1024, 1127, 1305, 1435, 1648, 1818, 2086, 2295, 2611, 2882, 3273, 3606, 4076, 4496, 5069
Offset: 0

Views

Author

Gus Wiseman, Jan 21 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(1) = 1 through a(14) = 18 partitions (A..E = 10..14):
  1  2  3  4   5  6    7    8    9    A    B    C     D     E
           31     42   421  53   432  64   542  75    643   86
                  51        62   531  73   632  84    652   95
                  321       71   621  82   641  93    742   A4
                            431       91   731  A2    751   B3
                            521       532  821  B1    832   C2
                                      541       543   841   D1
                                      631       642   931   653
                                      721       651   A21   743
                                                732   6421  752
                                                741         761
                                                831         842
                                                921         851
                                                5421        932
                                                            941
                                                            A31
                                                            B21
                                                            7421
		

Crossrefs

For mean instead of median: A102627, non-strict A067538 (ranked by A316413).
This is the strict case of A325347, ranked by A359908.
The median statistic is ranked by A360005(n)/2.
A000041 counts partitions, strict A000009.
A051293 counts subsets with integer mean, median A000975, cf. A005578.
A058398 counts partitions by mean, see also A008284, A327482.
A326567/A326568 gives the mean of prime indices.
A359893, A359901, A359902 count partitions by median.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&IntegerQ[Median[#]]&]],{n,0,30}]

A000980 Number of ways of writing 0 as Sum_{k=-n..n} e(k)*k, where e(k) is 0 or 1.

Original entry on oeis.org

2, 4, 8, 20, 52, 152, 472, 1520, 5044, 17112, 59008, 206260, 729096, 2601640, 9358944, 33904324, 123580884, 452902072, 1667837680, 6168510256, 22903260088, 85338450344, 318995297200, 1195901750512, 4495448217544, 16940411201280, 63983233268592
Offset: 0

Views

Author

Keywords

Comments

The 4-term sequence 2,4,8,20 is the answer to the "Solitaire Army" problem, or checker-jumping puzzle. It is too short to have its own entry. See Conway et a;., Winning Ways, Vol. 2, pp. 715-717. - N. J. A. Sloane, Mar 01 2018
Number of subsets of {-n..n} with sum 0. Also the number of subsets of {0..2n} that are empty or have mean n. For median instead of mean we have twice A024718. - Gus Wiseman, Apr 23 2023

Examples

			From _Gus Wiseman_, Apr 23 2023: (Start)
The a(0) = 2 through a(2) = 8 subsets of {-n..n} with sum 0 are:
  {}   {}        {}
  {0}  {0}       {0}
       {-1,1}    {-1,1}
       {-1,0,1}  {-2,2}
                 {-1,0,1}
                 {-2,0,2}
                 {-2,-1,1,2}
                 {-2,-1,0,1,2}
(End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 294.
  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see pp. 715-717.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A047653(n) = a(n)/2.
Bisection of A084239. Cf. A063865, A141000.
A007318 counts subsets by length, A327481 by integer mean.
A327475 counts subsets with integer mean, A000975 integer median.

Programs

  • Haskell
    a000980 n = length $ filter ((== 0) . sum) $ subsequences [-n..n]
  • Maple
    b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0,
          `if`(i=0, 1, 2*b(n, i-1)+b(n+i, i-1)+b(abs(n-i), i-1)))
        end:
    a:=n-> 2*b(0, n):
    seq(a(n), n=0..40); # Alois P. Heinz, Mar 10 2014
  • Mathematica
    a[n_] := SeriesCoefficient[ Product[1+x^k, {k, -n, n}], {x, 0, 0}]; a[0] = 2; Table[a[n], {n, 0, 24}](* Jean-François Alcover, Nov 28 2011 *)
    nmax = 26; d = {2}; a1 = {};
    Do[
      i = Ceiling[Length[d]/2];
      AppendTo[a1, If[i > Length[d], 0, d[[i]]]];
      d = PadLeft[d, Length[d] + 2 n] + PadRight[d, Length[d] + 2 n] +
        2 PadLeft[PadRight[d, Length[d] + n], Length[d] + 2 n];
      , {n, nmax}];
    a1 (* Ray Chandler, Mar 15 2014 *)
    Table[Length[Select[Subsets[Range[-n,n]],Total[#]==0&]],{n,0,5}] (* Gus Wiseman, Apr 23 2023 *)
  • PARI
    a(n)=polcoeff(prod(k=-n,n,1+x^k),0)
    

Formula

Constant term of Product_{k=-n..n} (1+x^k).
a(n) = Sum_i A067059(2n+1-i, i) = 2+2*Sum_j A047997(n, j); i.e., sum of alternate antidiagonals of A067059 and two more than twice row sums of A047997. - Henry Bottomley, Aug 11 2002
a(n) = A004171(n) - 2*A181765(n).
Coefficient of x^(n*(n+1)/2) in 2*Product_{k=1..n} (1+x^k)^2. - Sean A. Irvine, Oct 03 2011
From Gus Wiseman, Apr 23 2023: (Start)
a(n) = 2*A047653(n).
a(n) = A070925(2n+1) + 1.
a(n) = 2*A133406(2n+1).
a(n) = 2*(A212352(n) + 1).
a(n) = A222955(2n+1).
a(n) = 2*(A362046(2n) + 1).
(End)

Extensions

More terms from Michael Somos, Jun 10 2000

A360068 Number of integer partitions of n such that the parts have the same mean as the multiplicities.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 6, 0, 0, 0, 6, 0, 7, 0, 1, 0, 0, 0, 0, 90, 0, 63, 0, 0, 0, 0, 11, 0, 0, 0, 436, 0, 0, 0, 0, 0, 0, 0, 0, 2157, 0, 0, 240, 1595, 22, 0, 0, 0, 6464, 0, 0, 0, 0, 0, 0, 0, 0, 11628, 4361, 0, 0, 0, 0, 0, 0, 0, 12927, 0, 0, 621, 0
Offset: 0

Views

Author

Gus Wiseman, Jan 27 2023

Keywords

Comments

Note that such a partition cannot be strict for n > 1.
Conjecture: If n is squarefree, then a(n) = 0.

Examples

			The n = 1, 4, 8, 9, 12, 16, 18 partitions (D=13):
  (1)  (22)  (3311)  (333)  (322221)  (4444)      (444222)
             (5111)         (332211)  (43222111)  (444411)
                            (422211)  (43321111)  (552222)
                            (522111)  (53221111)  (555111)
                            (531111)  (54211111)  (771111)
                            (621111)  (63211111)  (822222)
                                                  (D11111)
For example, the partition (4,3,3,3,3,3,2,2,1,1) has mean 5/2, and its multiplicities (1,5,2,2) also have mean 5/2, so it is counted under a(20).
		

Crossrefs

These partitions are ranked by A359903, for prime factors A359904.
Positions of positive terms are A360070.
A000041 counts partitions, strict A000009.
A058398 counts partitions by mean, see also A008284, A327482.
A088529/A088530 gives mean of prime signature (A124010).
A326567/A326568 gives mean of prime indices (A112798).
A360069 counts partitions whose multiplicities have integer mean.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Mean[#]==Mean[Length/@Split[#]]&]],{n,0,30}]

A327481 Triangle read by rows where T(n,k) is the number of nonempty subsets of {1..n} with mean k.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 3, 3, 1, 1, 3, 7, 3, 1, 1, 3, 9, 9, 3, 1, 1, 3, 9, 19, 9, 3, 1, 1, 3, 9, 25, 25, 9, 3, 1, 1, 3, 9, 29, 51, 29, 9, 3, 1, 1, 3, 9, 31, 75, 75, 31, 9, 3, 1, 1, 3, 9, 31, 93, 151, 93, 31, 9, 3, 1, 1, 3, 9, 31, 105, 235, 235, 105, 31, 9, 3, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 13 2019

Keywords

Comments

All terms are odd.

Examples

			Triangle begins:
                         1
                       1   1
                     1   3   1
                   1   3   3   1
                 1   3   7   3   1
               1   3   9   9   3   1
             1   3   9  19   9   3   1
           1   3   9  25  25   9   3   1
         1   3   9  29  51  29   9   3   1
       1   3   9  31  75  75  31   9   3   1
     1   3   9  31  93 151  93  31   9   3   1
   1   3   9  31 105 235 235 105  31   9   3   1
The subsets counted in row n = 5:
  {1}  {2}      {3}          {4}      {5}
       {1,3}    {1,5}        {3,5}
       {1,2,3}  {2,4}        {3,4,5}
                {1,3,5}
                {2,3,4}
                {1,2,4,5}
                {1,2,3,4,5}
		

Crossrefs

Row sums are A051293.
The sequence of rows converges to A066571.
The version for partitions is A327482.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Mean[#]==k&]],{n,10},{k,n}]

A013580 Triangle formed in same way as Pascal's triangle (A007318) except 1 is added to central element in even-numbered rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 5, 9, 5, 1, 1, 6, 14, 14, 6, 1, 1, 7, 20, 29, 20, 7, 1, 1, 8, 27, 49, 49, 27, 8, 1, 1, 9, 35, 76, 99, 76, 35, 9, 1, 1, 10, 44, 111, 175, 175, 111, 44, 10, 1, 1, 11, 54, 155, 286, 351, 286, 155, 54, 11, 1, 1, 12, 65, 209, 441, 637, 637, 441, 209, 65
Offset: 0

Views

Author

Martin Hecko (bigusm(AT)interramp.com)

Keywords

Comments

From Gus Wiseman, Apr 19 2023: (Start)
Appears to be the number of nonempty subsets of {1,...,n} with median k, where the median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). For example, row n = 5 counts the following subsets:
{1} {2} {3} {4} {5}
{1,3} {1,5} {3,5}
{1,2,3} {2,4} {1,4,5}
{1,2,4} {1,3,4} {2,4,5}
{1,2,5} {1,3,5} {3,4,5}
{2,3,4}
{2,3,5}
{1,2,4,5}
{1,2,3,4,5}
Including half-steps gives A231147.
For mean instead of median we have A327481.
(End)

Examples

			Triangle begins:
   1
   1   1
   1   3   1
   1   4   4   1
   1   5   9   5   1
   1   6  14  14   6   1
   1   7  20  29  20   7   1
   1   8  27  49  49  27   8   1
   1   9  35  76  99  76  35   9   1
   1  10  44 111 175 175 111  44  10   1
   1  11  54 155 286 351 286 155  54  11   1
   1  12  65 209 441 637 637 441 209  65  12   1
		

Crossrefs

Row sums give A000975, A054106.
Central diagonal T(2n+1,n+1) appears to be A006134.
Central diagonal T(2n,n) appears to be A079309.
For partitions instead of subsets we have A359901, row sums A325347.
A000975 counts subsets with integer median.
A007318 counts subsets by length, A359893 by twice median.

Programs

  • Mathematica
    CoefficientList[CoefficientList[Series[1/(1 - (1 + y)*x)/(1 - y*x^2), {x, 0, 10}, {y, 0, 10}], x], y] // Flatten (* G. C. Greubel, Oct 10 2017 *)

Formula

G.f.: 1/(1-(1+y)*x)/(1-y*x^2). - Vladeta Jovovic, Oct 12 2003

Extensions

More terms from James Sellers

A047653 Constant term in expansion of (1/2) * Product_{k=-n..n} (1 + x^k).

Original entry on oeis.org

1, 2, 4, 10, 26, 76, 236, 760, 2522, 8556, 29504, 103130, 364548, 1300820, 4679472, 16952162, 61790442, 226451036, 833918840, 3084255128, 11451630044, 42669225172, 159497648600, 597950875256, 2247724108772, 8470205600640, 31991616634296, 121086752349064
Offset: 0

Views

Author

Keywords

Comments

Or, constant term in expansion of Product_{k=1..n} (x^k + 1/x^k)^2. - N. J. A. Sloane, Jul 09 2008
Or, maximal coefficient of the polynomial (1+x)^2 * (1+x^2)^2 *...* (1+x^n)^2.
a(n) = A000302(n) - A181765(n).
From Gus Wiseman, Apr 18 2023: (Start)
Also the number of subsets of {1..2n} that are empty or have mean n. The a(0) = 1 through a(3) = 10 subsets are:
{} {} {} {}
{1} {2} {3}
{1,3} {1,5}
{1,2,3} {2,4}
{1,2,6}
{1,3,5}
{2,3,4}
{1,2,3,6}
{1,2,4,5}
{1,2,3,4,5}
Also the number of subsets of {-n..n} with no 0's but with sum 0. The a(0) = 1 through a(3) = 10 subsets are:
{} {} {} {}
{-1,1} {-1,1} {-1,1}
{-2,2} {-2,2}
{-2,-1,1,2} {-3,3}
{-3,1,2}
{-2,-1,3}
{-2,-1,1,2}
{-3,-1,1,3}
{-3,-2,2,3}
{-3,-2,-1,1,2,3}
(End)

Crossrefs

Cf. A025591.
Cf. A053632; variant: A127728.
For median instead of mean we have A079309(n) + 1.
Odd bisection of A133406.
A000980 counts nonempty subsets of {1..2n-1} with mean n.
A007318 counts subsets by length, A327481 by mean.

Programs

  • Maple
    f:=n->coeff( expand( mul((x^k+1/x^k)^2,k=1..n) ),x,0);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0,
          `if`(i=0, 1, 2*b(n, i-1)+b(n+i, i-1)+b(abs(n-i), i-1)))
        end:
    a:=n-> b(0, n):
    seq(a(n), n=0..40);  # Alois P. Heinz, Mar 10 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n>i*(i+1)/2, 0, If[i == 0, 1, 2*b[n, i-1]+b[n+i, i-1]+b[Abs[n-i], i-1]]]; a[n_] := b[0, n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)
    nmax = 26; d = {1}; a1 = {};
    Do[
      i = Ceiling[Length[d]/2];
      AppendTo[a1, If[i > Length[d], 0, d[[i]]]];
      d = PadLeft[d, Length[d] + 2 n] + PadRight[d, Length[d] + 2 n] +
        2 PadLeft[PadRight[d, Length[d] + n], Length[d] + 2 n];
    , {n, nmax}];
    a1 (* Ray Chandler, Mar 15 2014 *)
    Table[Length[Select[Subsets[Range[2n]],Length[#]==0||Mean[#]==n&]],{n,0,6}] (* Gus Wiseman, Apr 18 2023 *)
  • PARI
    a(n)=polcoeff(prod(k=-n,n,1+x^k),0)/2
    
  • PARI
    {a(n)=sum(k=0,n*(n+1)/2,polcoeff(prod(m=1,n,1+x^m+x*O(x^k)),k)^2)} \\ Paul D. Hanna, Nov 30 2010

Formula

Sum of squares of coefficients in Product_{k=1..n} (1+x^k):
a(n) = Sum_{k=0..n(n+1)/2} A053632(n,k)^2. - Paul D. Hanna, Nov 30 2010
a(n) = A000980(n)/2.
a(n) ~ sqrt(3) * 4^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 11 2014
From Gus Wiseman, Apr 18 2023 (Start)
a(n) = A133406(2n+1).
a(n) = A212352(n) + 1.
a(n) = A362046(2n) + 1.
(End)

Extensions

More terms from Michael Somos, Jun 10 2000

A063776 Number of subsets of {1,2,...,n} which sum to 0 modulo n.

Original entry on oeis.org

2, 2, 4, 4, 8, 12, 20, 32, 60, 104, 188, 344, 632, 1172, 2192, 4096, 7712, 14572, 27596, 52432, 99880, 190652, 364724, 699072, 1342184, 2581112, 4971068, 9586984, 18512792, 35791472, 69273668, 134217728, 260301176, 505290272, 981706832
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Aug 16 2001

Keywords

Comments

From Gus Wiseman, Sep 14 2019: (Start)
Also the number of subsets of {1..n} that are empty or contain n and have integer mean. If the subsets are not required to contain n, we get A327475. For example, the a(1) = 2 through a(6) = 12 subsets are:
{} {} {} {} {} {}
{1} {2} {3} {4} {5} {6}
{1,3} {2,4} {1,5} {2,6}
{1,2,3} {2,3,4} {3,5} {4,6}
{1,3,5} {1,2,6}
{3,4,5} {1,5,6}
{1,2,4,5} {2,4,6}
{1,2,3,4,5} {4,5,6}
{1,2,3,6}
{1,4,5,6}
{2,3,5,6}
{2,3,4,5,6}
(End)

Examples

			G.f. = 2*x + 2*x^2 + 4*x^3 + 4*x^4 + 8*x^5 + 12*x^6 + 20*x^7 + 32*x^8 + 60*x^9 + ...
		

Crossrefs

Programs

  • Haskell
    a063776 n = a053636 n `div` n  -- Reinhard Zumkeller, Sep 13 2013
    
  • Mathematica
    Table[a = Select[ Divisors[n], OddQ[ # ] &]; Apply[Plus, 2^(n/a)*EulerPhi[a]]/n, {n, 1, 35}]
    a[ n_] := If[ n < 1, 0, 1/n Sum[ Mod[ d, 2] EulerPhi[ d] 2^(n / d), {d, Divisors[ n]}]]; (* Michael Somos, May 09 2013 *)
    Table[Length[Select[Subsets[Range[n]],#=={}||MemberQ[#,n]&&IntegerQ[Mean[#]]&]],{n,0,10}] (* Gus Wiseman, Sep 14 2019 *)
  • PARI
    {a(n) = if( n<1, 0, 1 / n * sumdiv( n, d, (d % 2) * eulerphi(d) * 2^(n / d)))}; /* Michael Somos, May 09 2013 */
    
  • PARI
    a(n) = sumdiv(n, d, (d%2)* 2^(n/d)*eulerphi(d))/n; \\ Michel Marcus, Feb 10 2016
    
  • Python
    from sympy import totient, divisors
    def A063776(n): return (sum(totient(d)<>(~n&n-1).bit_length(),generator=True))<<1)//n # Chai Wah Wu, Feb 21 2023

Formula

a(n) = (1/n) * Sum_{d divides n and d is odd} 2^(n/d) * phi(d).
a(n) = (1/n) * A053636(n). - Michael Somos, May 09 2013
a(n) = 2 * A000016(n).
For odd n, a(n) = A000031(n).
G.f.: -Sum_{m >= 0} (phi(2*m + 1)/(2*m + 1)) * log(1 - 2*x^(2*m + 1)). - Petros Hadjicostas, Jul 13 2019
a(n) = A082550(n) + 1. - Gus Wiseman, Sep 14 2019

Extensions

More terms from Vladeta Jovovic, Aug 20 2001

A359897 Number of strict integer partitions of n whose parts have the same mean as median.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 4, 4, 4, 7, 6, 6, 10, 7, 10, 13, 11, 9, 20, 10, 20, 18, 21, 12, 30, 24, 28, 27, 30, 15, 73, 16, 37, 43, 45, 67, 74, 19, 55, 71, 126, 21, 150, 22, 75, 225, 78, 24, 183, 126, 245, 192, 132, 27, 284, 244, 403, 303, 120, 30, 828
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2023

Keywords

Examples

			The a(1) = 1 through a(9) = 7 partitions:
  (1)  (2)  (3)    (4)    (5)    (6)      (7)    (8)    (9)
            (2,1)  (3,1)  (3,2)  (4,2)    (4,3)  (5,3)  (5,4)
                          (4,1)  (5,1)    (5,2)  (6,2)  (6,3)
                                 (3,2,1)  (6,1)  (7,1)  (7,2)
                                                        (8,1)
                                                        (4,3,2)
                                                        (5,3,1)
		

Crossrefs

The non-strict version is A240219, complement A359894, ranked by A359889.
The complement is counted by A359898.
The odd-length case is A359899, complement A359900.
A000041 counts partitions, strict A000009.
A008284/A058398/A327482 count partitions by mean, ranked by A326567/A326568.
A008289 counts strict partitions by mean.
A237984 counts partitions containing their mean, complement A327472.
A240850 counts strict partitions containing their mean, complement A240851.
A325347 counts ptns with integer median, strict A359907, ranked by A359908.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Mean[#]==Median[#]&]],{n,0,30}]
Showing 1-10 of 37 results. Next