cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A000302 Powers of 4: a(n) = 4^n.

Original entry on oeis.org

1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144, 1048576, 4194304, 16777216, 67108864, 268435456, 1073741824, 4294967296, 17179869184, 68719476736, 274877906944, 1099511627776, 4398046511104, 17592186044416, 70368744177664, 281474976710656
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 4), L(1, 4), P(1, 4), T(1, 4). Essentially same as Pisot sequences E(4, 16), L(4, 16), P(4, 16), T(4, 16). See A008776 for definitions of Pisot sequences.
The convolution square root of this sequence is A000984, the central binomial coefficients: C(2n,n). - T. D. Noe, Jun 11 2002
With P(n) being the number of integer partitions of n, p(i) as the number of parts of the i-th partition of n, d(i) as the number of different parts of the i-th partition of n, m(i, j) the multiplicity of the j-th part of the i-th partition of n, one has a(n) = Sum_{i = 1..P(n)} p(i)!/(Product_{j = 1..d(i)} m(i, j)!) * 2^(n-1). - Thomas Wieder, May 18 2005
Sums of rows of the triangle in A122366. - Reinhard Zumkeller, Aug 30 2006
Hankel transform of A076035. - Philippe Deléham, Feb 28 2009
Equals the Catalan sequence: (1, 1, 2, 5, 14, ...), convolved with A032443: (1, 3, 11, 42, ...). - Gary W. Adamson, May 15 2009
Sum of coefficients of expansion of (1 + x + x^2 + x^3)^n.
a(n) is number of compositions of natural numbers into n parts less than 4. For example, a(2) = 16 since there are 16 compositions of natural numbers into 2 parts less than 4.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 4-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Squares in A002984. - Reinhard Zumkeller, Dec 28 2011
Row sums of Pascal's triangle using the rule that going left increases the value by a factor of k = 3. For example, the first three rows are {1}, {3, 1}, and {9, 6, 1}. Using this rule gives row sums as (k+1)^n. - Jon Perry, Oct 11 2012
First differences of A002450. - Omar E. Pol, Feb 20 2013
Sum of all peak heights in Dyck paths of semilength n+1. - David Scambler, Apr 22 2013
Powers of 4 exceed powers of 2 by A020522 which is the m-th oblong number A002378(m), m being the n-th Mersenne number A000225(n); hence, we may write, a(n) = A000079(n) + A002378(A000225(n)). - Lekraj Beedassy, Jan 17 2014
a(n) is equal to 1 plus the sum for 0 < k < 2^n of the numerators and denominators of the reduced fractions k/2^n. - J. M. Bergot, Jul 13 2015
Binomial transform of A000244. - Tony Foster III, Oct 01 2016
From Ilya Gutkovskiy, Oct 01 2016: (Start)
Number of nodes at level n regular 4-ary tree.
Partial sums of A002001. (End)
Satisfies Benford's law [Berger-Hill, 2011]. - N. J. A. Sloane, Feb 08 2017
Also the number of connected dominating sets in the (n+1)-barbell graph. - Eric W. Weisstein, Jun 29 2017
Side length of the cells at level n in a pyramid scheme where a square grid is decomposed into overlapping 2 X 2 blocks (cf. Kropatsch, 1985). - Felix Fröhlich, Jul 04 2019
a(n-1) is the number of 3-compositions of n; see Hopkins & Ouvry reference. - Brian Hopkins, Aug 15 2020

References

  • H. W. Gould, Combinatorial Identities, 1972, eq. (1.93), p. 12.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994, eq. (5.39), p. 187.
  • D. Phulara and L. W. Shapiro, Descendants in ordered trees with a marked vertex, Congressus Numerantium, 205 (2011), 121-128.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Cf. A024036, A052539, A032443, A000351 (Binomial transform).
Cf. A249307.
Cf. A083420.

Programs

Formula

a(n) = 4^n.
a(0) = 1; a(n) = 4*a(n-1).
G.f.: 1/(1-4*x).
E.g.f.: exp(4*x).
a(n) = Sum_{k = 0..n} binomial(2k, k) * binomial(2(n - k), n - k). - Benoit Cloitre, Jan 26 2003 [See Graham et al., eq. (5.39), p. 187. - Wolfdieter Lang, Aug 16 2019]
1 = Sum_{n >= 1} 3/a(n) = 3/4 + 3/16 + 3/64 + 3/256 + 3/1024, ...; with partial sums: 3/4, 15/16, 63/64, 255/256, 1023/1024, ... - Gary W. Adamson, Jun 16 2003
a(n) = A001045(2*n) + A001045(2*n+1). - Paul Barry, Apr 27 2004
A000005(a(n)) = A005408(n+1). - Reinhard Zumkeller, Mar 04 2007
a(n) = Sum_{j = 0..n} 2^(n - j)*binomial(n + j, j). - Peter C. Heinig (algorithms(AT)gmx.de), Apr 06 2007
Hankel transform of A115967. - Philippe Deléham, Jun 22 2007
a(n) = 6*Stirling2(n+1, 4) + 6*Stirling2(n+1, 3) + 3*Stirling2(n+1, 2) + 1 = 2*Stirling2(2^n, 2^n - 1) + Stirling2(n+1, 2) + 1. - Ross La Haye, Jun 26 2008
a(n) = A159991(n)/A001024(n) = A047653(n) + A181765(n). A160700(a(n)) = A010685(n). - Reinhard Zumkeller, May 02 2009
a(n) = A188915(A006127(n)). - Reinhard Zumkeller, Apr 14 2011
a(n) = Sum_{k = 0..n} binomial(2*n+1, k). - Mircea Merca, Jun 25 2011
Sum_{n >= 1} Mobius(n)/a(n) = 0.1710822479183... - R. J. Mathar, Aug 12 2012
a(n) = Sum_{k = 0..n} binomial(2*k + x, k)*binomial(2*(n - k) - x, n - k) for every real number x. - Rui Duarte and António Guedes de Oliveira, Feb 16 2013
a(n) = 5*a(n - 1) - 4*a(n - 2). - Jean-Bernard François, Sep 12 2013
a(n) = (2*n+1) * binomial(2*n,n) * Sum_{j=0..n} (-1)^j/(2*j+1)*binomial(n,j). - Vaclav Kotesovec, Sep 15 2013
a(n) = A000217(2^n - 1) + A000217(2^n). - J. M. Bergot, Dec 28 2014
a(n) = (2^n)^2 = A000079(n)^2. - Doug Bell, Jun 23 2015
a(n) = A002063(n)/3 - A004171(n). - Zhandos Mambetaliyev, Nov 19 2016
a(n) = (1/2) * Product_{k = 0..n} (1 + (2*n + 1)/(2*k + 1)). - Peter Bala, Mar 06 2018
a(n) = A001045(n+1)*A001045(n+2) + A001045(n)^2. - Ezhilarasu Velayutham, Aug 30 2019
a(n) = 1 + 3*Sum_{k=0..n} binomial(2*n, n+k)*(k|9), where (k|9) is the Jacobi symbol. - Greg Dresden, Oct 11 2022
a(n) = Sum_{k = 0..n} binomial(2*n+1, 2*k) = Sum_{k = 0..n} binomial(2*n+1, 2*k+1). - Sela Fried, Mar 23 2023

Extensions

Partially edited by Joerg Arndt, Mar 11 2010

A000980 Number of ways of writing 0 as Sum_{k=-n..n} e(k)*k, where e(k) is 0 or 1.

Original entry on oeis.org

2, 4, 8, 20, 52, 152, 472, 1520, 5044, 17112, 59008, 206260, 729096, 2601640, 9358944, 33904324, 123580884, 452902072, 1667837680, 6168510256, 22903260088, 85338450344, 318995297200, 1195901750512, 4495448217544, 16940411201280, 63983233268592
Offset: 0

Views

Author

Keywords

Comments

The 4-term sequence 2,4,8,20 is the answer to the "Solitaire Army" problem, or checker-jumping puzzle. It is too short to have its own entry. See Conway et a;., Winning Ways, Vol. 2, pp. 715-717. - N. J. A. Sloane, Mar 01 2018
Number of subsets of {-n..n} with sum 0. Also the number of subsets of {0..2n} that are empty or have mean n. For median instead of mean we have twice A024718. - Gus Wiseman, Apr 23 2023

Examples

			From _Gus Wiseman_, Apr 23 2023: (Start)
The a(0) = 2 through a(2) = 8 subsets of {-n..n} with sum 0 are:
  {}   {}        {}
  {0}  {0}       {0}
       {-1,1}    {-1,1}
       {-1,0,1}  {-2,2}
                 {-1,0,1}
                 {-2,0,2}
                 {-2,-1,1,2}
                 {-2,-1,0,1,2}
(End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 294.
  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see pp. 715-717.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A047653(n) = a(n)/2.
Bisection of A084239. Cf. A063865, A141000.
A007318 counts subsets by length, A327481 by integer mean.
A327475 counts subsets with integer mean, A000975 integer median.

Programs

  • Haskell
    a000980 n = length $ filter ((== 0) . sum) $ subsequences [-n..n]
  • Maple
    b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0,
          `if`(i=0, 1, 2*b(n, i-1)+b(n+i, i-1)+b(abs(n-i), i-1)))
        end:
    a:=n-> 2*b(0, n):
    seq(a(n), n=0..40); # Alois P. Heinz, Mar 10 2014
  • Mathematica
    a[n_] := SeriesCoefficient[ Product[1+x^k, {k, -n, n}], {x, 0, 0}]; a[0] = 2; Table[a[n], {n, 0, 24}](* Jean-François Alcover, Nov 28 2011 *)
    nmax = 26; d = {2}; a1 = {};
    Do[
      i = Ceiling[Length[d]/2];
      AppendTo[a1, If[i > Length[d], 0, d[[i]]]];
      d = PadLeft[d, Length[d] + 2 n] + PadRight[d, Length[d] + 2 n] +
        2 PadLeft[PadRight[d, Length[d] + n], Length[d] + 2 n];
      , {n, nmax}];
    a1 (* Ray Chandler, Mar 15 2014 *)
    Table[Length[Select[Subsets[Range[-n,n]],Total[#]==0&]],{n,0,5}] (* Gus Wiseman, Apr 23 2023 *)
  • PARI
    a(n)=polcoeff(prod(k=-n,n,1+x^k),0)
    

Formula

Constant term of Product_{k=-n..n} (1+x^k).
a(n) = Sum_i A067059(2n+1-i, i) = 2+2*Sum_j A047997(n, j); i.e., sum of alternate antidiagonals of A067059 and two more than twice row sums of A047997. - Henry Bottomley, Aug 11 2002
a(n) = A004171(n) - 2*A181765(n).
Coefficient of x^(n*(n+1)/2) in 2*Product_{k=1..n} (1+x^k)^2. - Sean A. Irvine, Oct 03 2011
From Gus Wiseman, Apr 23 2023: (Start)
a(n) = 2*A047653(n).
a(n) = A070925(2n+1) + 1.
a(n) = 2*A133406(2n+1).
a(n) = 2*(A212352(n) + 1).
a(n) = A222955(2n+1).
a(n) = 2*(A362046(2n) + 1).
(End)

Extensions

More terms from Michael Somos, Jun 10 2000

A070925 Number of subsets of A = {1,2,...,n} that have the same center of gravity as A, i.e., (n+1)/2.

Original entry on oeis.org

1, 1, 3, 3, 7, 7, 19, 17, 51, 47, 151, 137, 471, 427, 1519, 1391, 5043, 4651, 17111, 15883, 59007, 55123, 206259, 193723, 729095, 688007, 2601639, 2465133, 9358943, 8899699, 33904323, 32342235, 123580883, 118215779, 452902071, 434314137, 1667837679, 1602935103
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 20 2002

Keywords

Comments

From Gus Wiseman, Apr 15 2023: (Start)
Also the number of nonempty subsets of {0..n} with mean n/2. The a(0) = 1 through a(5) = 7 subsets are:
{0} {0,1} {1} {0,3} {2} {0,5}
{0,2} {1,2} {0,4} {1,4}
{0,1,2} {0,1,2,3} {1,3} {2,3}
{0,2,4} {0,1,4,5}
{1,2,3} {0,2,3,5}
{0,1,3,4} {1,2,3,4}
{0,1,2,3,4} {0,1,2,3,4,5}
(End)

Examples

			Of the 32 (2^5) sets which can be constructed from the set A = {1,2,3,4,5} only the sets {3}, {2, 3, 4}, {2, 4}, {1, 2, 4, 5}, {1, 2, 3, 4, 5}, {1, 3, 5}, {1, 5} give an average of 3.
		

Crossrefs

The odd bisection is A000980(n) - 1 = 2*A047653(n) - 1.
For median instead of mean we have A100066, bisection A006134.
Including the empty set gives A222955.
The one-based version is A362046, even bisection A047653(n) - 1.
A007318 counts subsets by length.
A067538 counts partitions with integer mean, strict A102627.
A231147 counts subsets by median.
A327481 counts subsets by integer mean.

Programs

  • Mathematica
    Needs["DiscreteMath`Combinatorica`"]; f[n_] := Block[{s = Subsets[n], c = 0, k = 2}, While[k < 2^n + 1, If[ (Plus @@ s[[k]]) / Length[s[[k]]] == (n + 1)/2, c++ ]; k++ ]; c]; Table[ f[n], {n, 1, 20}]
    (* second program *)
    Table[Length[Select[Subsets[Range[0,n]],Mean[#]==n/2&]],{n,0,10}] (* Gus Wiseman, Apr 15 2023 *)

Formula

From Gus Wiseman, Apr 18 2023: (Start)
a(2n+1) = A000980(n) - 1.
a(n) = A222955(n) - 1.
a(n) = 2*A362046(n) + 1.
(End)

Extensions

Edited by Robert G. Wilson v and John W. Layman, May 25 2002
a(34)-a(38) from Fausto A. C. Cariboni, Oct 08 2020

A156181 Number of solutions to e(1)*1 + e(2)*2 + ... + e(n)*n = e(-1)*1 + e(-2)*2 + ... + e(-n)*n, where e(j) are from {-1,0,1}, j=-n,...,n.

Original entry on oeis.org

1, 3, 13, 65, 403, 2669, 18759, 136477, 1020373, 7785741, 60395165, 474817833, 3775005799, 30298719855, 245167429681, 1997854542163, 16381233095985, 135050690760831, 1118800428892925, 9308791880014333, 77755512086256649
Offset: 0

Views

Author

Steven Finch, Feb 05 2009

Keywords

Comments

a(n) = coefficient of x^(n*(n+1)) in the polynomial Product_{k=1..n} (1 + x^k + x^(2*k))^2, and is the maximal such coefficient as well.

Crossrefs

Programs

  • Mathematica
    Table[Coefficient[Expand[Product[(1 + x^k + x^(2*k))^2, {k, 1, n}]],x, n*(n + 1)], {n, 0, 20}]

Formula

a(n) is the constant term in expansion of Product_{k=1..n} (x^k + 1 + 1/x^k)^2. - Ilya Gutkovskiy, Jan 22 2024

A133406 Half the number of ways of placing up to n pawns on a length n chessboard row so that the row balances at its middle.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 10, 9, 26, 24, 76, 69, 236, 214, 760, 696, 2522, 2326, 8556, 7942, 29504, 27562, 103130, 96862, 364548, 344004, 1300820, 1232567, 4679472, 4449850, 16952162, 16171118, 61790442, 59107890, 226451036, 217157069, 833918840
Offset: 1

Views

Author

R. H. Hardin, Nov 24 2007

Keywords

Comments

Odd-indexed terms are A047653.
Also the number of subsets of {1..n-1} that are empty or have mean (n-1)/2. - Gus Wiseman, Apr 23 2023

Examples

			From _Gus Wiseman_, Apr 23 2023: (Start)
The a(1) = 1 through a(8) = 9 subsets:
  {}  {}  {}   {}     {}       {}         {}           {}
          {1}  {1,2}  {2}      {1,4}      {3}          {1,6}
                      {1,3}    {2,3}      {1,5}        {2,5}
                      {1,2,3}  {1,2,3,4}  {2,4}        {3,4}
                                          {1,2,6}      {1,2,4,7}
                                          {1,3,5}      {1,2,5,6}
                                          {2,3,4}      {1,3,4,6}
                                          {1,2,3,6}    {2,3,4,5}
                                          {1,2,4,5}    {1,2,3,4,5,6}
                                          {1,2,3,4,5}
(End)
		

Crossrefs

For median instead of mean we have A361801 + 1, the doubling of A024718.
Not counting the empty set gives A362046 (shifted left).
A007318 counts subsets by length, A327481 by integer mean.
A047653 counts subsets of {1..2n} with mean n, nonempty A212352.
A070925 counts subsets of {1..2n-1} with mean n, nonempty A000980.
A327475 counts subsets with integer mean, nonempty A051293.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Length[#]==0||Mean[#]==n/2&]],{n,0,10}] (* Gus Wiseman, Apr 23 2023 *)
  • PARI
    a(n) = {polcoef(prod(k=1, n, 1 + 'x^(2*k-n-1)), 0)/2} \\ Andrew Howroyd, Jan 07 2023

Formula

From Gus Wiseman, Apr 23 2023: (Start)
a(2n+1) = A000980(n)/2 = A047653(n).
a(n) = A362046(n-1) + 1.
(End)

A212352 Row sums of A047997.

Original entry on oeis.org

0, 1, 3, 9, 25, 75, 235, 759, 2521, 8555, 29503, 103129, 364547, 1300819, 4679471, 16952161, 61790441, 226451035, 833918839, 3084255127, 11451630043, 42669225171, 159497648599, 597950875255, 2247724108771, 8470205600639
Offset: 0

Views

Author

N. J. A. Sloane, May 16 2012

Keywords

Comments

Also the number of nonempty subsets of {1..2n} with mean n, even bisection of A362046. - Gus Wiseman, Apr 15 2023

Examples

			From _Gus Wiseman_, Apr 15 2023: (Start)
The a(1) = 1 through a(3) = 9 subsets:
  {1}  {2}      {3}
       {1,3}    {1,5}
       {1,2,3}  {2,4}
                {1,2,6}
                {1,3,5}
                {2,3,4}
                {1,2,3,6}
                {1,2,4,5}
                {1,2,3,4,5}
(End)
		

Crossrefs

Equals A047653(n) - 1.
Row sums of A047997.
For median instead of mean we have A079309, bisection of A361801.
Even bisection of A362046, zero-based version A070925.
A000980 counts nonempty subsets of {1..2n-1} with mean n.
A007318 counts subsets by length.
A327475 counts subsets with integer mean.
A327481 counts subsets by mean.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[2n]],Mean[#]==n&]],{n,0,6}] (* Gus Wiseman, Apr 15 2023 *)

Formula

From Gus Wiseman, Apr 15 2023: (Start)
a(n) = A000980(n)/2 - 1.
a(n) = A047653(n) - 1.
a(n) = A133406(2n+1) - 1.
a(n) = A362046(2n).
(End)

A047997 Triangle of numbers a(n,k) = number of balance positions when k equal weights are placed at a k-subset of the points {-n, -(n-1), ..., n-1, n} on a centrally pivoted rod.

Original entry on oeis.org

1, 1, 2, 1, 3, 5, 1, 4, 8, 12, 1, 5, 13, 24, 32, 1, 6, 18, 43, 73, 94, 1, 7, 25, 69, 141, 227, 289, 1, 8, 32, 104, 252, 480, 734, 910, 1, 9, 41, 150, 414, 920, 1656, 2430, 2934, 1, 10, 50, 207, 649, 1636, 3370, 5744, 8150, 9686, 1, 11, 61, 277, 967
Offset: 1

Views

Author

Keywords

Comments

Also the number of k-subsets of {1..2n-1} with mean n. - Gus Wiseman, Apr 16 2023

Examples

			From _Gus Wiseman_, Apr 18 2023: (Start)
Triangle begins:
    1
    1    2
    1    3    5
    1    4    8   12
    1    5   13   24   32
    1    6   18   43   73   94
    1    7   25   69  141  227  289
    1    8   32  104  252  480  734  910
    1    9   41  150  414  920 1656 2430 2934
Row n = 4 counts the following balanced subsets:
  {0}  {-1,1}  {-1,0,1}   {-3,0,1,2}
       {-2,2}  {-2,0,2}   {-4,0,1,3}
       {-3,3}  {-3,0,3}   {-2,-1,0,3}
       {-4,4}  {-3,1,2}   {-2,-1,1,2}
               {-4,0,4}   {-3,-1,0,4}
               {-4,1,3}   {-3,-1,1,3}
               {-2,-1,3}  {-3,-2,1,4}
               {-3,-1,4}  {-3,-2,2,3}
                          {-4,-1,1,4}
                          {-4,-1,2,3}
                          {-4,-2,2,4}
                          {-4,-3,3,4}
(End)
		

Crossrefs

Last column is a(n,n) = A002838(n).
Row sums are A212352(n) = A047653(n)-1 = A000980(n)/2-1.
A007318 counts subsets by length, A327481 by mean, A013580 by median.
A327475 counts subsets with integer mean.

Programs

  • Mathematica
    a[n_, k_] := Length[ IntegerPartitions[ n*(2k - n + 1)/2, n, Range[2k - n + 1]]]; Flatten[ Table[ a[n, k], {k, 1, 11}, {n, 1, k}]] (* Jean-François Alcover, Jan 02 2012 *)
    Table[Length[Select[Subsets[Range[-n,n]],Length[#]==k&&Total[#]==0&]],{n,8},{k,n}] (* Gus Wiseman, Apr 16 2023 *)

Formula

Equivalent to number of partitions of n(2k-n+1)/2 into up to n parts each no more than 2k-n+1 so a(n, k)=A067059(n, n(2k-n+1)/2); row sums are A047653(n)-1 = A212352(n). - Henry Bottomley, Aug 11 2001

A133871 a(n) = the definite integral Integral_{0..1} Product_{j=1..n} 4*sin^2(Pi*j*x) dx.

Original entry on oeis.org

2, 4, 6, 10, 12, 20, 24, 34, 44, 64, 78, 116, 148, 208, 286, 410, 556, 808, 1120, 1620, 2308, 3352, 4784, 6980, 10064, 14680, 21296, 31128, 45276, 66288, 96712, 141654, 207156, 303716, 444748, 652612, 956884, 1404920, 2062080, 3029564, 4450120
Offset: 1

Views

Author

Thomas Ward, Jan 07 2008

Keywords

Comments

This quantity arises in some examples associated to the dynamical Mertens's theorem for quasihyperbolic toral automorphisms.
The function being integrated to compute a_n vanishes on the set of points in the Farey sequence of level n. I am particularly interested in knowing how large the sequence is asymptotically.
a(n) = coefficient of x^(n*(n+1)/2) in the polynomial (-1)^n*Product_{k=1..n} (1-x^k)^2, and is the maximal such coefficient as well. - Steven Finch, Feb 03 2009

Examples

			a(2) = 4 since Integral_{0..1} sin^2(Pi*x) sin^2(2*Pi*x) dx = 1/4.
		

Crossrefs

Programs

  • Maple
    a:= n->int(product(4*(sin(Pi*j*x))^2, j=1..n), x=0..1); seq(a(n), n=1..10);
    # second Maple program:
    A133871:= k -> (-1)^k*coeff(mul((t^j-1)^2,j=1..k),t,k*(k+1)/2);
    # Robert Israel, Mar 15 2013
  • Mathematica
    p = 1; Table[p = Expand[p*(1 - x^n)^2]; Max[(-1)^n*CoefficientList[p, x]], {n, 1, 100}] (* Vaclav Kotesovec, May 03 2018 *)
    (* The constant "d" *) Chop[-E^(-I*(Pi^2*(1 + 6*x^2) - 6*PolyLog[2, E^(2*I*Pi*x)]) / (6*Pi*x)) /. x -> (x /. FindRoot[Pi*(Pi*(-1 + 6*x^2) + 12*I*x*Log[1 - E^(2*I*Pi*x)]) + 6*PolyLog[2, E^(2*I*Pi*x)], {x, 4/5}, WorkingPrecision -> 100])] (* Vaclav Kotesovec, May 04 2018 *)
  • PARI
    a(n)=sum(k=0, n*(n+1)/2, polcoeff(prod(m=1, n, 1-x^m+x*O(x^k)), k)^2) \\ Paul D. Hanna

Formula

a(n) = sum of squares of coefficients in Product_{k=1..n} (1-x^k). - Paul D. Hanna, Nov 30 2010
a(n) ~ c * d^n / sqrt(n), where d = 1.48770584269062356180051131... and c = 2.40574583936181024... [Ward, 2013]. - Vaclav Kotesovec, May 03 2018

Extensions

More terms from Steven Finch, Feb 03 2009

A181765 Number of subsets of the interval [-n .. +n] with sums > 0.

Original entry on oeis.org

0, 2, 12, 54, 230, 948, 3860, 15624, 63014, 253588, 1019072, 4091174, 16412668, 65808044, 263755984, 1056789662, 4233176854, 16953418148, 67885557896, 271793651816, 1088059997732, 4355377285932, 17432688395816, 69770793302408, 279227252601884
Offset: 0

Views

Author

Keywords

Comments

a(n) = A000302(n) - A047653(n) = (A004171(n) - A000980(n)) / 2.

Examples

			a(1) = #{{0,1}, {1}} = 2;
a(2) = #{{-2,0,1,2}, {-2,1,2}, {-1,0,1,2}, {-1,0,2}, {-1,1,2}, {-1,2}, {0,1}, {0,1,2}, {0,2}, {1}, {1,2}, {2}} = 12.
		

Programs

  • Haskell
    import Data.List (subsequences)
    a181765 n = length [xs | xs <- subsequences [-n..n], sum xs > 0]
    -- Reinhard Zumkeller, Feb 22 2012, Nov 13 2010

A369709 Maximal coefficient of (1 + x)^3 * (1 + x^2)^3 * (1 + x^3)^3 * ... * (1 + x^n)^3.

Original entry on oeis.org

1, 3, 12, 62, 332, 1974, 12345, 80006, 531524, 3602358, 24836850, 173607568, 1226700784, 8748861828, 62922343566, 455805857978, 3321800235936, 24338840717799, 179217603427200, 1325490660318216, 9841000101286172, 73319407735938570, 548051770664957631, 4108826483323392880
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 29 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Max[CoefficientList[Product[(1 + x^k)^3, {k, 1, n}], x]], {n, 0, 23}]
  • PARI
    a(n) = vecmax(Vec(prod(k=1, n, (1+x^k)^3))); \\ Michel Marcus, Jan 30 2024
    
  • Python
    from collections import Counter
    def A369709(n):
        c = {0:1}
        for k in range(1,n+1):
            d = Counter(c)
            for j in c:
                a = c[j]
                d[j+k] += 3*a
                d[j+2*k] += 3*a
                d[j+3*k] += a
            c = d
        return max(c.values()) # Chai Wah Wu, Feb 07 2024
Showing 1-10 of 24 results. Next