A000302
Powers of 4: a(n) = 4^n.
Original entry on oeis.org
1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144, 1048576, 4194304, 16777216, 67108864, 268435456, 1073741824, 4294967296, 17179869184, 68719476736, 274877906944, 1099511627776, 4398046511104, 17592186044416, 70368744177664, 281474976710656
Offset: 0
- H. W. Gould, Combinatorial Identities, 1972, eq. (1.93), p. 12.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994, eq. (5.39), p. 187.
- D. Phulara and L. W. Shapiro, Descendants in ordered trees with a marked vertex, Congressus Numerantium, 205 (2011), 121-128.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
- T. D. Noe, Table of n, a(n) for n = 0..100
- Arno Berger and Theodore P. Hill, Benford's law strikes back: no simple explanation in sight for mathematical gem, The Mathematical Intelligencer 33.1 (2011): 85-91.
- Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Combinatorial Identities Associated with a Multidimensional Polynomial Sequence, J. Int. Seq., Vol. 21 (2018), Article 18.7.4.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- G. Dresden and Y. Li, Periodic Weighted Sums of Binomial Coefficients, arXiv:2210.04322 [math.NT], 2022.
- R. Duarte and A. G. de Oliveira, Short note on the convolution of binomial coefficients, arXiv preprint arXiv:1302.2100 [math.CO], 2013 and J. Int. Seq. 16 (2013) #13.7.6.
- Roudy El Haddad, Recurrent Sums and Partition Identities, arXiv:2101.09089 [math.NT], 2021.
- Roudy El Haddad, A generalization of multiple zeta value. Part 1: Recurrent sums. Notes on Number Theory and Discrete Mathematics, 28(2), 2022, 167-199, DOI: 10.7546/nntdm.2022.28.2.167-199.
- Madeleine Goertz and Aaron Williams, The Quaternary Gray Code and How It Can Be Used to Solve Ziggurat and Other Ziggu Puzzles, arXiv:2411.19291 [math.CO], 2024. See p. 5.
- R. K. Guy, Letter to N. J. A. Sloane
- Brian Hopkins and Stéphane Ouvry, Combinatorics of Multicompositions, arXiv:2008.04937 [math.CO], 2020.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 8
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 269
- Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
- Tanya Khovanova, Recursive Sequences
- Craig Knecht, Number of tilings for a 6 sphinx tile repetitive unit.
- Walter G. Kropatsch, A pyramid that grows by powers of 2, Pattern Recognition Letters, Vol. 3, No. 5 (1985), 315-322 [Subscription required].
- Mircea Merca, A Note on Cosine Power Sums J. Integer Sequences, Vol. 15 (2012), Article 12.5.3.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Robert Price, Comments on A000302 concerning Elementary Cellular Automata, Feb 26 2016.
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Robert Schneider, Partition zeta functions, Research in Number Theory, 2(1):9., 2016.
- Paul K. Stockmeyer, The Pascal Rhombus and the Stealth Configuration, arXiv preprint arXiv:1504.04404 [math.CO], 2015.
- Eric Weisstein's World of Mathematics, Barbell Graph
- Eric Weisstein's World of Mathematics, Cantor Dust
- Eric Weisstein's World of Mathematics, Connected Dominating Set
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Index to Elementary Cellular Automata
- Index entries for sequences related to cellular automata
- Index entries for "core" sequences
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (4).
- Index entries for sequences related to Benford's law
-
a000302 = (4 ^)
a000302_list = iterate (* 4) 1 -- Reinhard Zumkeller, Apr 04 2012
-
A000302 := n->4^n;
for n from 0 to 10 do sum(2^(n-j)*binomial(n+j,j),j=0..n); od; # Peter C. Heinig (algorithms(AT)gmx.de), Apr 06 2007
A000302:=-1/(-1+4*z); # Simon Plouffe in his 1992 dissertation.
-
Table[4^n, {n, 0, 30}] (* Stefan Steinerberger, Apr 01 2006 *)
CoefficientList[Series[1/(1 - 4 x), {x, 0, 50}], x] (* Vincenzo Librandi, May 29 2014 *)
NestList[4 # &, 1, 30] (* Harvey P. Dale, Mar 26 2015 *)
4^Range[0, 30] (* Eric W. Weisstein, Jun 29 2017 *)
LinearRecurrence[{4}, {1}, 31] (* Robert A. Russell, Nov 08 2018 *)
-
A000302(n):=4^n$ makelist(A000302(n),n,0,30); /* Martin Ettl, Oct 24 2012 */
-
A000302(n)=4^n \\ Michael B. Porter, Nov 06 2009
-
print([4**n for n in range(25)]) # Michael S. Branicky, Jan 04 2021
-
is_A000302 = lambda n: n.bit_count()==1 and n.bit_length()&1 # M. F. Hasler, Nov 25 2024
-
[4**n for n in range(0,25)] # Stefano Spezia, Jul 23 2025
-
(List.fill(20)(4: BigInt)).scanLeft(1: BigInt)( * ) // Alonso del Arte, Jun 22 2019
A000980
Number of ways of writing 0 as Sum_{k=-n..n} e(k)*k, where e(k) is 0 or 1.
Original entry on oeis.org
2, 4, 8, 20, 52, 152, 472, 1520, 5044, 17112, 59008, 206260, 729096, 2601640, 9358944, 33904324, 123580884, 452902072, 1667837680, 6168510256, 22903260088, 85338450344, 318995297200, 1195901750512, 4495448217544, 16940411201280, 63983233268592
Offset: 0
From _Gus Wiseman_, Apr 23 2023: (Start)
The a(0) = 2 through a(2) = 8 subsets of {-n..n} with sum 0 are:
{} {} {}
{0} {0} {0}
{-1,1} {-1,1}
{-1,0,1} {-2,2}
{-1,0,1}
{-2,0,2}
{-2,-1,1,2}
{-2,-1,0,1,2}
(End)
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 294.
- E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see pp. 715-717.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Ray Chandler, Table of n, a(n) for n = 0..1668 (terms < 10^1000; terms 0..200 from T. D. Noe, terms 201..400 from Alois P. Heinz)
- Eunice Y. S. Chan and R. M. Corless, Narayana, Mandelbrot, and A New Kind of Companion Matrix, arXiv preprint arXiv:1606.09132 [math.CO], 2016.
- R. C. Entringer, Representation of m as Sum_{k=-n..n} epsilon_k k, Canad. Math. Bull., 11 (1968), 289-293.
- Steven R. Finch, Signum equations and extremal coefficients, February 7, 2009. [Cached copy, with permission of the author]
- J. H. van Lint, Representations of 0 as Sum_{k = -N..N} epsilon_k*k, Proc. Amer. Math. Soc., 18 (1967), 182-184.
-
a000980 n = length $ filter ((== 0) . sum) $ subsequences [-n..n]
-
b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0,
`if`(i=0, 1, 2*b(n, i-1)+b(n+i, i-1)+b(abs(n-i), i-1)))
end:
a:=n-> 2*b(0, n):
seq(a(n), n=0..40); # Alois P. Heinz, Mar 10 2014
-
a[n_] := SeriesCoefficient[ Product[1+x^k, {k, -n, n}], {x, 0, 0}]; a[0] = 2; Table[a[n], {n, 0, 24}](* Jean-François Alcover, Nov 28 2011 *)
nmax = 26; d = {2}; a1 = {};
Do[
i = Ceiling[Length[d]/2];
AppendTo[a1, If[i > Length[d], 0, d[[i]]]];
d = PadLeft[d, Length[d] + 2 n] + PadRight[d, Length[d] + 2 n] +
2 PadLeft[PadRight[d, Length[d] + n], Length[d] + 2 n];
, {n, nmax}];
a1 (* Ray Chandler, Mar 15 2014 *)
Table[Length[Select[Subsets[Range[-n,n]],Total[#]==0&]],{n,0,5}] (* Gus Wiseman, Apr 23 2023 *)
-
a(n)=polcoeff(prod(k=-n,n,1+x^k),0)
A070925
Number of subsets of A = {1,2,...,n} that have the same center of gravity as A, i.e., (n+1)/2.
Original entry on oeis.org
1, 1, 3, 3, 7, 7, 19, 17, 51, 47, 151, 137, 471, 427, 1519, 1391, 5043, 4651, 17111, 15883, 59007, 55123, 206259, 193723, 729095, 688007, 2601639, 2465133, 9358943, 8899699, 33904323, 32342235, 123580883, 118215779, 452902071, 434314137, 1667837679, 1602935103
Offset: 1
Sharon Sela (sharonsela(AT)hotmail.com), May 20 2002
Of the 32 (2^5) sets which can be constructed from the set A = {1,2,3,4,5} only the sets {3}, {2, 3, 4}, {2, 4}, {1, 2, 4, 5}, {1, 2, 3, 4, 5}, {1, 3, 5}, {1, 5} give an average of 3.
Including the empty set gives
A222955.
A327481 counts subsets by integer mean.
-
Needs["DiscreteMath`Combinatorica`"]; f[n_] := Block[{s = Subsets[n], c = 0, k = 2}, While[k < 2^n + 1, If[ (Plus @@ s[[k]]) / Length[s[[k]]] == (n + 1)/2, c++ ]; k++ ]; c]; Table[ f[n], {n, 1, 20}]
(* second program *)
Table[Length[Select[Subsets[Range[0,n]],Mean[#]==n/2&]],{n,0,10}] (* Gus Wiseman, Apr 15 2023 *)
A156181
Number of solutions to e(1)*1 + e(2)*2 + ... + e(n)*n = e(-1)*1 + e(-2)*2 + ... + e(-n)*n, where e(j) are from {-1,0,1}, j=-n,...,n.
Original entry on oeis.org
1, 3, 13, 65, 403, 2669, 18759, 136477, 1020373, 7785741, 60395165, 474817833, 3775005799, 30298719855, 245167429681, 1997854542163, 16381233095985, 135050690760831, 1118800428892925, 9308791880014333, 77755512086256649
Offset: 0
-
Table[Coefficient[Expand[Product[(1 + x^k + x^(2*k))^2, {k, 1, n}]],x, n*(n + 1)], {n, 0, 20}]
A133406
Half the number of ways of placing up to n pawns on a length n chessboard row so that the row balances at its middle.
Original entry on oeis.org
1, 1, 2, 2, 4, 4, 10, 9, 26, 24, 76, 69, 236, 214, 760, 696, 2522, 2326, 8556, 7942, 29504, 27562, 103130, 96862, 364548, 344004, 1300820, 1232567, 4679472, 4449850, 16952162, 16171118, 61790442, 59107890, 226451036, 217157069, 833918840
Offset: 1
From _Gus Wiseman_, Apr 23 2023: (Start)
The a(1) = 1 through a(8) = 9 subsets:
{} {} {} {} {} {} {} {}
{1} {1,2} {2} {1,4} {3} {1,6}
{1,3} {2,3} {1,5} {2,5}
{1,2,3} {1,2,3,4} {2,4} {3,4}
{1,2,6} {1,2,4,7}
{1,3,5} {1,2,5,6}
{2,3,4} {1,3,4,6}
{1,2,3,6} {2,3,4,5}
{1,2,4,5} {1,2,3,4,5,6}
{1,2,3,4,5}
(End)
For median instead of mean we have
A361801 + 1, the doubling of
A024718.
Not counting the empty set gives
A362046 (shifted left).
-
Table[Length[Select[Subsets[Range[n]],Length[#]==0||Mean[#]==n/2&]],{n,0,10}] (* Gus Wiseman, Apr 23 2023 *)
-
a(n) = {polcoef(prod(k=1, n, 1 + 'x^(2*k-n-1)), 0)/2} \\ Andrew Howroyd, Jan 07 2023
Original entry on oeis.org
0, 1, 3, 9, 25, 75, 235, 759, 2521, 8555, 29503, 103129, 364547, 1300819, 4679471, 16952161, 61790441, 226451035, 833918839, 3084255127, 11451630043, 42669225171, 159497648599, 597950875255, 2247724108771, 8470205600639
Offset: 0
From _Gus Wiseman_, Apr 15 2023: (Start)
The a(1) = 1 through a(3) = 9 subsets:
{1} {2} {3}
{1,3} {1,5}
{1,2,3} {2,4}
{1,2,6}
{1,3,5}
{2,3,4}
{1,2,3,6}
{1,2,4,5}
{1,2,3,4,5}
(End)
A000980 counts nonempty subsets of {1..2n-1} with mean n.
A327475 counts subsets with integer mean.
-
Table[Length[Select[Subsets[Range[2n]],Mean[#]==n&]],{n,0,6}] (* Gus Wiseman, Apr 15 2023 *)
A047997
Triangle of numbers a(n,k) = number of balance positions when k equal weights are placed at a k-subset of the points {-n, -(n-1), ..., n-1, n} on a centrally pivoted rod.
Original entry on oeis.org
1, 1, 2, 1, 3, 5, 1, 4, 8, 12, 1, 5, 13, 24, 32, 1, 6, 18, 43, 73, 94, 1, 7, 25, 69, 141, 227, 289, 1, 8, 32, 104, 252, 480, 734, 910, 1, 9, 41, 150, 414, 920, 1656, 2430, 2934, 1, 10, 50, 207, 649, 1636, 3370, 5744, 8150, 9686, 1, 11, 61, 277, 967
Offset: 1
From _Gus Wiseman_, Apr 18 2023: (Start)
Triangle begins:
1
1 2
1 3 5
1 4 8 12
1 5 13 24 32
1 6 18 43 73 94
1 7 25 69 141 227 289
1 8 32 104 252 480 734 910
1 9 41 150 414 920 1656 2430 2934
Row n = 4 counts the following balanced subsets:
{0} {-1,1} {-1,0,1} {-3,0,1,2}
{-2,2} {-2,0,2} {-4,0,1,3}
{-3,3} {-3,0,3} {-2,-1,0,3}
{-4,4} {-3,1,2} {-2,-1,1,2}
{-4,0,4} {-3,-1,0,4}
{-4,1,3} {-3,-1,1,3}
{-2,-1,3} {-3,-2,1,4}
{-3,-1,4} {-3,-2,2,3}
{-4,-1,1,4}
{-4,-1,2,3}
{-4,-2,2,4}
{-4,-3,3,4}
(End)
Last column is a(n,n) =
A002838(n).
A327475 counts subsets with integer mean.
-
a[n_, k_] := Length[ IntegerPartitions[ n*(2k - n + 1)/2, n, Range[2k - n + 1]]]; Flatten[ Table[ a[n, k], {k, 1, 11}, {n, 1, k}]] (* Jean-François Alcover, Jan 02 2012 *)
Table[Length[Select[Subsets[Range[-n,n]],Length[#]==k&&Total[#]==0&]],{n,8},{k,n}] (* Gus Wiseman, Apr 16 2023 *)
A133871
a(n) = the definite integral Integral_{0..1} Product_{j=1..n} 4*sin^2(Pi*j*x) dx.
Original entry on oeis.org
2, 4, 6, 10, 12, 20, 24, 34, 44, 64, 78, 116, 148, 208, 286, 410, 556, 808, 1120, 1620, 2308, 3352, 4784, 6980, 10064, 14680, 21296, 31128, 45276, 66288, 96712, 141654, 207156, 303716, 444748, 652612, 956884, 1404920, 2062080, 3029564, 4450120
Offset: 1
a(2) = 4 since Integral_{0..1} sin^2(Pi*x) sin^2(2*Pi*x) dx = 1/4.
- Vaclav Kotesovec, Table of n, a(n) for n = 1..1000 (terms 1..174 from Robert Israel)
- Miklos Bóna, R. Gómez, M. D. Ward, Workshop in Analytic and Probabilistic Combinatorics BIRS-16w5048 2016.
- S. R. Finch, Signum equations and extremal coefficients.
- Steven R. Finch, Signum equations and extremal coefficients, February 7, 2009. [Cached copy, with permission of the author]
- Jeffrey Gaither, Guy Louchard, Stephan Wagner, and Mark Daniel Ward, Resolution of T. Ward's Question and the Israel-Finch Conjecture: Precise Analysis of an Integer Sequence Arising in Dynamics, Combinatorics, Probability and Computing, 24 (2015), 195-215. Special Issue Honouring the Memory of Philippe Flajolet.
- S. Jaidee, S. Stevens and T. Ward, Mertens' theorem for toral automorphisms, arXiv:0801.2082 [math.DS], 2008-2010.
- S. Jaidee, S. Stevens and T. Ward, Mertens' theorem for toral automorphisms, Proc. Amer. Math. Soc. 139 (2011), no. 5, 1819-1824.
- Yasuhiko Kamiyama, The Euler characteristic of the fiber product of Morse functions, Bull. Korean Math. Soc. (2025) Vol. 62, No. 1, pp. 71-80. See pp. 73, 75.
- Mark Daniel Ward, Resolution of T. Ward's Question and the Israel-Finch Conjecture. Precise Asymptotic Analysis of an Integer Sequence Motivated by the Dynamical Mertens' Theorem for Quasihyperbolic Toral Automorphisms, Slides, 2013.
- T. Ward, D. W. Cantrell and R. Israel, sci.math.research discussion, 2008.
-
a:= n->int(product(4*(sin(Pi*j*x))^2, j=1..n), x=0..1); seq(a(n), n=1..10);
# second Maple program:
A133871:= k -> (-1)^k*coeff(mul((t^j-1)^2,j=1..k),t,k*(k+1)/2);
# Robert Israel, Mar 15 2013
-
p = 1; Table[p = Expand[p*(1 - x^n)^2]; Max[(-1)^n*CoefficientList[p, x]], {n, 1, 100}] (* Vaclav Kotesovec, May 03 2018 *)
(* The constant "d" *) Chop[-E^(-I*(Pi^2*(1 + 6*x^2) - 6*PolyLog[2, E^(2*I*Pi*x)]) / (6*Pi*x)) /. x -> (x /. FindRoot[Pi*(Pi*(-1 + 6*x^2) + 12*I*x*Log[1 - E^(2*I*Pi*x)]) + 6*PolyLog[2, E^(2*I*Pi*x)], {x, 4/5}, WorkingPrecision -> 100])] (* Vaclav Kotesovec, May 04 2018 *)
-
a(n)=sum(k=0, n*(n+1)/2, polcoeff(prod(m=1, n, 1-x^m+x*O(x^k)), k)^2) \\ Paul D. Hanna
A181765
Number of subsets of the interval [-n .. +n] with sums > 0.
Original entry on oeis.org
0, 2, 12, 54, 230, 948, 3860, 15624, 63014, 253588, 1019072, 4091174, 16412668, 65808044, 263755984, 1056789662, 4233176854, 16953418148, 67885557896, 271793651816, 1088059997732, 4355377285932, 17432688395816, 69770793302408, 279227252601884
Offset: 0
a(1) = #{{0,1}, {1}} = 2;
a(2) = #{{-2,0,1,2}, {-2,1,2}, {-1,0,1,2}, {-1,0,2}, {-1,1,2}, {-1,2}, {0,1}, {0,1,2}, {0,2}, {1}, {1,2}, {2}} = 12.
-
import Data.List (subsequences)
a181765 n = length [xs | xs <- subsequences [-n..n], sum xs > 0]
-- Reinhard Zumkeller, Feb 22 2012, Nov 13 2010
A369709
Maximal coefficient of (1 + x)^3 * (1 + x^2)^3 * (1 + x^3)^3 * ... * (1 + x^n)^3.
Original entry on oeis.org
1, 3, 12, 62, 332, 1974, 12345, 80006, 531524, 3602358, 24836850, 173607568, 1226700784, 8748861828, 62922343566, 455805857978, 3321800235936, 24338840717799, 179217603427200, 1325490660318216, 9841000101286172, 73319407735938570, 548051770664957631, 4108826483323392880
Offset: 0
-
Table[Max[CoefficientList[Product[(1 + x^k)^3, {k, 1, n}], x]], {n, 0, 23}]
-
a(n) = vecmax(Vec(prod(k=1, n, (1+x^k)^3))); \\ Michel Marcus, Jan 30 2024
-
from collections import Counter
def A369709(n):
c = {0:1}
for k in range(1,n+1):
d = Counter(c)
for j in c:
a = c[j]
d[j+k] += 3*a
d[j+2*k] += 3*a
d[j+3*k] += a
c = d
return max(c.values()) # Chai Wah Wu, Feb 07 2024
Showing 1-10 of 24 results.
Comments