A038845
3-fold convolution of A000302 (powers of 4).
Original entry on oeis.org
1, 12, 96, 640, 3840, 21504, 114688, 589824, 2949120, 14417920, 69206016, 327155712, 1526726656, 7046430720, 32212254720, 146028888064, 657129996288, 2937757630464, 13056700579840, 57724360458240, 253987186016256, 1112705767309312, 4855443348258816
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Adam Ehrenberg, Joseph T. Iosue, Abhinav Deshpande, Dominik Hangleiter, and Alexey V. Gorshkov, The Second Moment of Hafnians in Gaussian Boson Sampling, arXiv:2403.13878 [quant-ph], 2024. See p. 30.
- Index entries for linear recurrences with constant coefficients, signature (12,-48,64).
Sequences similar to the form q^(n-2)*binomial(n, 2):
A000217 (q=1),
A001788 (q=2),
A027472 (q=3), this sequence (q=4),
A081135 (q=5),
A081136 (q=6),
A027474 (q=7),
A081138 (q=8),
A081139 (q=9),
A081140 (q=10),
A081141 (q=11),
A081142 (q=12),
A027476 (q=15).
-
List([0..30], n-> 4^n*Binomial(n+2,n) ); # G. C. Greubel, Jul 20 2019
-
[4^n*Binomial(n+2, 2): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
seq((n+2)*(n+1)*4^n/2, n=0..30); # Zerinvary Lajos, Apr 25 2007
-
Table[4^n*Binomial[n+2,n], {n,0,30}] (* G. C. Greubel, Jul 20 2019 *)
-
a(n)=(n+2)*(n+1)<<(2*n-1) \\ Charles R Greathouse IV, Aug 21 2015
-
[4^(n-2)*binomial(n,2) for n in range(2, 30)] # Zerinvary Lajos, Mar 11 2009
A038846
4-fold convolution of A000302 (powers of 4); expansion of g.f. 1/(1-4*x)^4.
Original entry on oeis.org
1, 16, 160, 1280, 8960, 57344, 344064, 1966080, 10813440, 57671680, 299892736, 1526726656, 7633633280, 37580963840, 182536110080, 876173328384, 4161823309824, 19585050869760, 91396904058880, 423311976693760, 1947235092791296, 8901646138474496, 40462027902156800
Offset: 0
Cf.
A000302,
A000984,
A002457,
A002697,
A002802,
A006044,
A020918,
A038231,
A038845,
A057524,
A152818.
-
List([0..30], n-> 4^n*Binomial(n+3,3) ) # G. C. Greubel, Jul 20 2019
-
[4^n*Binomial(n+3, 3): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
seq(seq(binomial(i, j)*4^(i-3), j =i-3), i=3..33); # Zerinvary Lajos, Dec 03 2007
seq(binomial(n+3,3)*4^n,n=0..30); # Zerinvary Lajos, May 19 2008
-
Table[4^n*Binomial[n+3,3], {n,0,30}] (* G. C. Greubel, Jul 20 2019 *)
-
Vec(1/(1-4*x)^4+O(x^30)) \\ Charles R Greathouse IV, Oct 03 2016
-
[lucas_number2(n, 4, 0)*binomial(n,3)/2^6 for n in range(3, 33)] # Zerinvary Lajos, Mar 11 2009
A040075
5-fold convolution of A000302 (powers of 4); expansion of 1/(1-4*x)^5.
Original entry on oeis.org
1, 20, 240, 2240, 17920, 129024, 860160, 5406720, 32440320, 187432960, 1049624576, 5725224960, 30534533120, 159719096320, 821412495360, 4161823309824, 20809116549120, 102821517066240, 502682972323840, 2434043865989120, 11683410556747776, 55635288365465600
Offset: 0
-
List([0..30], n-> 4^n*Binomial(n+4, 4)); # G. C. Greubel, Jul 20 2019
-
[4^n*Binomial(n+4, 4): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
seq(seq(binomial(i, j)*4^(i-4), j =i-4), i=4..22); # Zerinvary Lajos, Dec 03 2007
seq(binomial(n+4,4)*4^n,n=0..30); # Zerinvary Lajos, May 19 2008
spec := [S, {B=Set(Z, 0 <= card), S=Prod(Z, Z, Z, Z, B, B, B, B)}, labeled]: seq(combstruct[count](spec, size=n)/24, n=4..34); # Zerinvary Lajos, Apr 05 2009
-
Table[Binomial[n+4,4]*4^n, {n,0,30}] (* Michael De Vlieger, Aug 21 2015 *)
-
vector(30, n, n--; 4^n*binomial(n+4, 4)) \\ G. C. Greubel, Jul 20 2019
-
[lucas_number2(n, 4, 0)*binomial(n,4)/2^8 for n in range(4, 34)] # Zerinvary Lajos, Mar 11 2009
A163912
Least common multiple of all cycle sizes in range [A000302(n-1)..A024036(n)] of permutation A163355/A163356.
Original entry on oeis.org
1, 2, 6, 24, 36, 288, 432, 1728, 2592, 31104, 15552
Offset: 0
Original entry on oeis.org
1, 2, 3, 18, 30, 178, 306, 1864, 3214, 20032, 34708
Offset: 0
Original entry on oeis.org
1, 2, 6, 8, 18, 32, 108, 216, 324, 1944, 1944
Offset: 0
A045543
6-fold convolution of A000302 (powers of 4); expansion of 1/(1-4*x)^6.
Original entry on oeis.org
1, 24, 336, 3584, 32256, 258048, 1892352, 12976128, 84344832, 524812288, 3148873728, 18320719872, 103817412608, 574988746752, 3121367482368, 16647293239296, 87398289506304, 452414675091456, 2312341672689664, 11683410556747776, 58417052783738880, 289303499500421120
Offset: 0
-
List([0..30], n-> 4^n*Binomial(n+5,5)); # G. C. Greubel, Jul 20 2019
-
[4^n*Binomial(n+5, 5): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
seq(seq(binomial(i+5, j)*4^i, j =i), i=0..30); # Zerinvary Lajos, Dec 03 2007
seq(binomial(n+5,5)*4^n,n=0..30); # Zerinvary Lajos, Jun 16 2008
-
CoefficientList[Series[1/(1-4x)^6,{x,0,30}],x] (* or *) LinearRecurrence[ {24,-240,1280,-3840,6144,-4096}, {1,24,336,3584,32256, 258048}, 30] (* Harvey P. Dale, Mar 24 2018 *)
-
Vec(1/(1-4*x)^6 + O(x^30)) \\ Michel Marcus, Aug 21 2015
-
[lucas_number2(n, 4, 0)*binomial(n,5)/2^10 for n in range(5, 35)] # Zerinvary Lajos, Mar 11 2009
Original entry on oeis.org
0, 0, 2, 1, 10, 9, 54, 57, 295, 329, 1613, 1834, 8812, 10072
Offset: 0
Original entry on oeis.org
0, 1, 10, 69, 406, 2186, 11124, 54445, 259006, 1205790, 5519020, 24918306, 111250140, 492051124, 2159081192, 9409526397, 40766269774, 175707380630, 753876367356, 3221460111958, 13716223138388, 58210889582796
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Hacène Belbachir, Toufik Djellal, Jean-Gabriel Luque, On the self-convolution of generalized Fibonacci numbers, arXiv:1703.00323 [math.CO], 2017.
- A. Bernini, F. Disanto, R. Pinzani and S. Rinaldi, Permutations defining convex permutominoes, J. Int. Seq. 10 (2007) # 07.9.7
-
[(n+3)*4^n -(n+2)*Binomial(2*n+3, n+1)/2: n in [0..25]]; // Vincenzo Librandi, Jun 09 2011
-
CoefficientList[Series[x ((1 - Sqrt[1 - 4 x])/(2 x)/(1 - 4 x))^2, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 29 2014 *)
A054337
7-fold convolution of A000302 (powers of 4).
Original entry on oeis.org
1, 28, 448, 5376, 53760, 473088, 3784704, 28114944, 196804608, 1312030720, 8396996608, 51908706304, 311452237824, 1820797698048, 10404558274560, 58265526337536, 320460394856448, 1734256254517248, 9249366690758656, 48680877319782400, 253140562062868480
Offset: 0
-
List([0..30], n-> 4^n*Binomial(n+6,6)); # G. C. Greubel, Jul 21 2019
-
[4^n*Binomial(n+6, 6): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
seq(seq(binomial(i, j)*4^(i-6), j =i-6), i=6..36); # Zerinvary Lajos, Dec 03 2007
seq(binomial(n+6,6)*4^n,n=0..30); # Zerinvary Lajos, Jun 16 2008
-
Table[4^n*Binomial[n+6,6], {n,0,30}] (* G. C. Greubel, Jul 21 2019 *)
-
vector(30, n, n--; 4^n*binomial(n+6,6) ) \\ G. C. Greubel, Jul 21 2019
-
[lucas_number2(n, 4, 0)*binomial(n,6)/2^12 for n in range(6, 36)] # Zerinvary Lajos, Mar 11 2009
Showing 1-10 of 587 results.
Comments