cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A036070 Expansion of (-1+1/(1-4*x)^4)/(16*x); related to A038846.

Original entry on oeis.org

1, 10, 80, 560, 3584, 21504, 122880, 675840, 3604480, 18743296, 95420416, 477102080, 2348810240, 11408506880, 54760833024, 260113956864, 1224065679360, 5712306503680, 26456998543360, 121702193299456
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A038846, A001787. a(n)= A030526(n+1, 1) (first column of triangle).

Formula

a(n) = 4^(n-1)*binomial(n+4, 3); G.f. (-1+(1-4*x)^(-4))/(x*4^2).

A042985 Convolution of A000108 (Catalan numbers) with A038846.

Original entry on oeis.org

1, 17, 178, 1477, 10654, 69930, 428772, 2496813, 13962982, 75582078, 398302268, 2052354850, 10375356460, 51596749300, 252953904072, 1224672639357, 5863899363510, 27801377704310, 130648178243660, 609082400931158
Offset: 0

Views

Author

Keywords

Comments

Also convolution of A045724 with A000984 (central binomial coefficients); also convolution of A042941 with A000302 (powers of 4).

Programs

  • Magma
    m:=20; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1-Sqrt(1-4*x))/(2*x*(1-4*x)^4) )); // G. C. Greubel, Feb 17 2019
    
  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-4*x])/(2*x*(1-4*x)^4), {x, 0, 20}], x] (* G. C. Greubel, Feb 17 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1-sqrt(1-4*x))/(2*x*(1-4*x)^4)) \\ G. C. Greubel, Feb 17 2019
    
  • Sage
    ((1-sqrt(1-4*x))/(2*x*(1-4*x)^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Feb 17 2019

Formula

a(n) = binomial(n+4, 3)*(4^(n+1) - A000984(n+4)/A000984(3))/2, where A000984(n) = binomial(2*n, n).
G.f.: (1 - sqrt(1-4*x))/(2*x*(1-4*x)^4).
D-finite with recurrence: n*(n+1)*a(n) -2*n*(4*n+13)*a(n-1) +8*(n+3)*(2*n+5)*a(n-2)=0. - R. J. Mathar, Jan 28 2020

A042940 Convolution of Catalan numbers A000108(n+1), n >= 0, with A038846.

Original entry on oeis.org

1, 18, 197, 1694, 12586, 84708, 530733, 3149542, 17910398, 98409532, 525628194, 2741723180, 14015785460, 70417793992, 348499310973, 1702076053686, 8216326834550, 39251274184780, 185770424237398, 871859230081092
Offset: 0

Views

Author

Keywords

Comments

Also convolution of A018218(n+1), n >= 0, with itself; also convolution of A041001 with A000302 (powers of 4); also convolution of A041005 with A000984 (central binomial coefficients).

Formula

a(n) = binomial(n+4, 2)*((n+8)*A001700(2)*4^(n+1)-A002457(n+4)/2)/A002457(2), A001700(2)= 10, A002457(2)=30; G.f. (c(x)^2)/(1-4*x)^4, where c(x) = g.f. for Catalan numbers.

A075513 Triangle read by rows. T(n, m) are the coefficients of Sidi polynomials.

Original entry on oeis.org

1, -1, 2, 1, -8, 9, -1, 24, -81, 64, 1, -64, 486, -1024, 625, -1, 160, -2430, 10240, -15625, 7776, 1, -384, 10935, -81920, 234375, -279936, 117649, -1, 896, -45927, 573440, -2734375, 5878656, -5764801, 2097152, 1, -2048, 183708, -3670016, 27343750, -94058496, 161414428, -134217728, 43046721
Offset: 1

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

Coefficients of the Sidi polynomials (-1)^(n-1)*D_{n-1,1,n-1}(x), for n >=1, where D_{k,n,m}(z) is given in Theorem 4.2., p. 862, of Sidi [1980].
The row polynomials p(n, x) := Sum_{m=0..n-1} a(n, m)x^m, n >= 1, are obtained from ((Eu(x)^n)*(x-1)^n)/(n*x), where Eu(x) := xd/dx is the Euler-derivative with respect to x.
The row polynomials p(n, y) := Sum_{m=0..n-1} a(n, m)*y^m, n >= 1, are also obtained from ((d^m/dx^m)((exp(x)-1)^m)/m)/exp(x) after replacement of exp(x) by y. Here (d^m/dx^m)f(x), m >= 1, denotes m-fold differentiation of f(x) with respect to x.
b(k,m,n) := (Sum_{p=0..m-1} (a(m, p)*((p+1)*k)^n))/(m-1)!, n >= 0, has g.f. 1/Product_{p=1..m} (1 - k*p*x) for k = 1, 2,... and m = 1, 2,...
The (signed) row sums give A000142(n-1), n >= 1, (factorials) and (unsigned) A074932(n).
The (unsigned) columns give A000012 (powers of 1), 2*A001787(n+1), (3^2)*A027472(n), (4^3)*A038846(n-1), (5^4)*A036071(n-5), (6^5)*A036084(n-6), (7^6)*A036226(n-7), (8^7)*A053107(n-8) for m=0..7.
Right edge of triangle is A000169. - Michel Marcus, May 17 2013

Examples

			The triangle T(n, m)  begins:
  n\m 0     1      2        3        4         5         6          7       8
  1:  1
  2: -1     2
  3:  1    -8      9
  4: -1    24    -81       64
  5:  1   -64    486    -1024      625
  6: -1   160  -2430    10240   -15625      7776
  7:  1  -384  10935   -81920   234375   -279936    117649
  8: -1   896 -45927   573440 -2734375   5878656  -5764801    2097152
  9:  1 -2048 183708 -3670016 27343750 -94058496 161414428 -134217728 4304672
  [Reformatted by _Wolfdieter Lang_, Oct 12 2022]
-----------------------------------------------------------------------------
p(2,x) = -1+2*x = (1/(2*x))*x*(d/dx)*x*(d/dx)*(x-1)^2.
		

References

  • A. Sidi, Practical Extrapolation Methods: Theory and Applications, Cambridge University Press, Cambridge, 2003.

Crossrefs

Programs

  • Maple
    # Assuming offset 0.
    seq(seq((-1)^(n-k)*binomial(n, k)*(k+1)^n, k=0..n), n=0..8);
    # Alternative:
    egf := x -> 1/(exp(LambertW(-exp(-x)*x*y) + x) - x*y):
    ser := x -> series(egf(x), x, 12):
    row := n -> seq(coeff(n!*coeff(ser(x), x, n), y, k), k=0..n):
    seq(print(row(n)), n = 0..8); # Peter Luschny, Oct 21 2022
  • Mathematica
    p[n_, x_] := p[n, x] = Nest[ x*D[#, x]& , (x-1)^n, n]/(n*x); a[n_, m_] := Coefficient[ p[n, x], x, m]; Table[a[n, m], {n, 1, 9}, {m, 0, n-1}] // Flatten (* Jean-François Alcover, Jul 03 2013 *)
  • PARI
    tabl(nn) = {for (n=1, nn, for (m=0, n-1, print1((-1)^(n-m-1)*binomial(n-1, m)*(m+1)^(n-1), ", ");); print(););} \\ Michel Marcus, May 17 2013

Formula

T(n, m) = ((-1)^(n-m-1)) binomial(n-1, m)*(m+1)^(n-1), n >= m+1 >= 1, else 0.
G.f. for m-th column: ((m+1)^m)(x/(1+(m+1)*x))^(m+1), m >= 0.
E.g.f.: -LambertW(-x*y*exp(-x))/((1+LambertW(-x*y*exp(-x)))*x*y). - Vladeta Jovovic, Feb 13 2008 [corrected for offset 0 <= m <= n. For offset n >= 1 take the integral over x. - Wolfdieter Lang, Oct 12 2022]
T(n, k) = S(n, k+1) / n where S(, ) is triangle in A258773. - Michael Somos, May 13 2018
E.g.f. of column k, with offset n >= 0: exp(-(k + 1)*x)*((k + 1)*x)^k/k!. - Wolfdieter Lang, Oct 20 2022
E.g.f: 1/(exp(LambertW(-exp(-x)*x*y) + x) - x*y) assuming offset = 0. - Peter Luschny, Oct 21 2022

A057524 Number of 3 x n binary matrices without unit columns up to row and column permutations.

Original entry on oeis.org

1, 3, 7, 14, 25, 41, 64, 95, 136, 189, 256, 339, 441, 564, 711, 885, 1089, 1326, 1600, 1914, 2272, 2678, 3136, 3650, 4225, 4865, 5575, 6360, 7225, 8175, 9216, 10353, 11592, 12939, 14400, 15981, 17689, 19530, 21511, 23639, 25921, 28364, 30976
Offset: 0

Views

Author

Vladeta Jovovic, Sep 02 2000

Keywords

Comments

Unit column of a binary matrix is a column with only one 1. First differences of a(n) give number of minimal 3-covers of an unlabeled n-set that cover 3 points of that set uniquely (if offset is 3).

Examples

			There are 7 binary 3x2 matrices without unit columns up to row and column permutations:
[0 0] [0 0] [0 0] [0 1] [0 1] [0 1] [1 1]
[0 0] [0 1] [1 1] [0 1] [1 0] [1 1] [1 1]
[0 0] [0 1] [1 1] [0 1] [1 1] [1 1] [1 1].
		

Crossrefs

Cf. A038846 for labeled case.

Programs

  • Mathematica
    CoefficientList[ Series[ 1/(1 - x^3)/(1 - x^2)/(1 - x)^3, {x, 0, 42}], x] (* Jean-François Alcover, Mar 26 2013 *)

Formula

(1/6)*(Z(S_n; 5, 5, ...)+3*Z(S_n; 3, 5, 3, 5, ...)+2*Z(S_n; 2, 2, 5, 2, 2, 5, ...)) where Z(S_n; x_1, x_2, x_3, ...) is cycle index of symmetric group S_n of degree n.
G.f.: 1/(1-x^3)/(1-x^2)/(1-x)^3.
Let P(i,k) be the number of integer partitions of n into k parts, then with k=3 we have a(n) = Sum_{m=1..n} Sum_{i=k..m} P(i,k). - Thomas Wieder, Feb 18 2007
a(n) = Sum_{m=0..n} (n-m+1)*floor(((m+3)^2+3)/12). [Renzo Benedetti, Sep 30 2009]
a(n) = floor( ((n+2)*(n+6)/12)^2 ) = round( ((n+2)*(n+6)/12)^2 ). [Renzo Benedetti, Jul 25 2012]
Partial sums of A000601. - R. J. Mathar, Jul 25 2012

Extensions

More terms from James Sellers, Sep 07 2000

A040075 5-fold convolution of A000302 (powers of 4); expansion of 1/(1-4*x)^5.

Original entry on oeis.org

1, 20, 240, 2240, 17920, 129024, 860160, 5406720, 32440320, 187432960, 1049624576, 5725224960, 30534533120, 159719096320, 821412495360, 4161823309824, 20809116549120, 102821517066240, 502682972323840, 2434043865989120, 11683410556747776, 55635288365465600
Offset: 0

Views

Author

Keywords

Comments

Also convolution of A020920 with A000984 (central binomial coefficients).
With a different offset, number of n-permutations (n=5) of 5 objects u, v, w, z, x with repetition allowed, containing exactly four (4)u's. Example: a(1)=20 because we have uuuuv, uuuvu, uuvuu, uvuuu, vuuuu, uuuuw, uuuwu, uuwuu, uwuuu, wuuuu, uuuuz, uuuzu, uuzuu, uzuuu, zuuuu, uuuux, uuuxu, uuxuu, uxuuu and xuuuu. - Zerinvary Lajos, May 19 2008
Also convolution of A000302 with A038846, also convolution of A002457 with A020918, also convolution of A002697 with A038845, also convolution of A002802 with A002802. [Rui Duarte, Oct 08 2011]

Crossrefs

Programs

  • GAP
    List([0..30], n-> 4^n*Binomial(n+4, 4)); # G. C. Greubel, Jul 20 2019
  • Magma
    [4^n*Binomial(n+4, 4): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
    
  • Maple
    seq(seq(binomial(i, j)*4^(i-4), j =i-4), i=4..22); # Zerinvary Lajos, Dec 03 2007
    seq(binomial(n+4,4)*4^n,n=0..30); # Zerinvary Lajos, May 19 2008
    spec := [S, {B=Set(Z, 0 <= card), S=Prod(Z, Z, Z, Z, B, B, B, B)}, labeled]: seq(combstruct[count](spec, size=n)/24, n=4..34); # Zerinvary Lajos, Apr 05 2009
  • Mathematica
    Table[Binomial[n+4,4]*4^n, {n,0,30}] (* Michael De Vlieger, Aug 21 2015 *)
  • PARI
    vector(30, n, n--; 4^n*binomial(n+4, 4)) \\ G. C. Greubel, Jul 20 2019
    
  • Sage
    [lucas_number2(n, 4, 0)*binomial(n,4)/2^8 for n in range(4, 34)] # Zerinvary Lajos, Mar 11 2009
    

Formula

a(n) = binomial(n+4, 4)*4^n.
G.f.: 1/(1-4*x)^5.
a(n) = Sum_{ i_1+i_2+i_3+i_4+i_5+i_6+i_7+i_8+i_9+i_10 = n } f(i_1)*f(i_2) *f(i_3)*f(i_4)*f(i_5)*f(i_6)*f(i_7)*f(i_8)*f(i_9)*f(i_10) with f(k)=A000984(k). - Rui Duarte, Oct 08 2011
E.g.f.: (3 + 48*x + 144*x^2 + 128*x^3 + 32*x^4)*exp(4*x)/3. - G. C. Greubel, Jul 20 2019
From Amiram Eldar, Mar 25 2022: (Start)
Sum_{n>=0} 1/a(n) = 376/3 - 432*log(4/3).
Sum_{n>=0} (-1)^n/a(n) = 2000*log(5/4) - 1336/3. (End)

A054335 A convolution triangle of numbers based on A000984 (central binomial coefficients of even order).

Original entry on oeis.org

1, 2, 1, 6, 4, 1, 20, 16, 6, 1, 70, 64, 30, 8, 1, 252, 256, 140, 48, 10, 1, 924, 1024, 630, 256, 70, 12, 1, 3432, 4096, 2772, 1280, 420, 96, 14, 1, 12870, 16384, 12012, 6144, 2310, 640, 126, 16, 1, 48620, 65536, 51480, 28672, 12012, 3840, 924, 160, 18, 1
Offset: 0

Views

Author

Wolfdieter Lang, Mar 13 2000

Keywords

Comments

In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Bell-subgroup of the Riordan-group. The g.f. for the row polynomials p(n,x) (increasing powers of x) is 1/(sqrt(1-4*z)-x*z).
Riordan array (1/sqrt(1-4*x),x/sqrt(1-4*x)). - Paul Barry, May 06 2009
The matrix inverse is apparently given by deleting the leftmost column from A206022. - R. J. Mathar, Mar 12 2013

Examples

			Triangle begins:
    1;
    2,    1;
    6,    4,   1;
   20,   16,   6,   1;
   70,   64,  30,   8,  1;
  252,  256, 140,  48, 10,  1;
  924, 1024, 630, 256, 70, 12, 1; ...
Fourth row polynomial (n=3): p(3,x) = 20 + 16*x + 6*x^2 + x^3.
From _Paul Barry_, May 06 2009: (Start)
Production matrix begins
    2,   1;
    2,   2,  1;
    0,   2,  2,  1;
   -2,   0,  2,  2,  1;
    0,  -2,  0,  2,  2,  1;
    4,   0, -2,  0,  2,  2, 1;
    0,   4,  0, -2,  0,  2, 2, 1;
  -10,   0,  4,  0, -2,  0, 2, 2, 1;
    0, -10,  0,  4,  0, -2, 0, 2, 2, 1; (End)
		

Crossrefs

Row sums: A026671.

Programs

  • GAP
    T:= function(n, k)
        if k mod 2=0 then return Binomial(2*n-k, n-Int(k/2))*Binomial(n-Int(k/2),Int(k/2))/Binomial(k,Int(k/2));
        else return 4^(n-k)*Binomial(n-Int((k-1)/2)-1, Int((k-1)/2));
        fi;
      end;
    Flat(List([0..10], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Jul 20 2019
  • Magma
    T:= func< n, k | (k mod 2) eq 0 select Binomial(2*n-k, n-Floor(k/2))* Binomial(n-Floor(k/2),Floor(k/2))/Binomial(k,Floor(k/2)) else 4^(n-k)*Binomial(n-Floor((k-1)/2)-1, Floor((k-1)/2)) >;
    [[T(n,k): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jul 20 2019
    
  • Maple
    A054335 := proc(n,k)
        if k <0 or k > n then
            0 ;
        elif type(k,odd) then
            kprime := floor(k/2) ;
            binomial(n-kprime-1,kprime)*4^(n-k) ;
        else
            kprime := k/2 ;
            binomial(2*n-k,n-kprime)*binomial(n-kprime,kprime)/binomial(k,kprime) ;
        end if;
    end proc: # R. J. Mathar, Mar 12 2013
    # Uses function PMatrix from A357368. Adds column 1,0,0,0,... to the left.
    PMatrix(10, n -> binomial(2*(n-1), n-1)); # Peter Luschny, Oct 19 2022
  • Mathematica
    Flatten[ CoefficientList[#1, x] & /@ CoefficientList[ Series[1/(Sqrt[1 - 4*z] - x*z), {z, 0, 9}], z]] (* or *)
    a[n_, k_?OddQ] := 4^(n-k)*Binomial[(2*n-k-1)/2, (k-1)/2]; a[n_, k_?EvenQ] := (Binomial[n-k/2, k/2]*Binomial[2*n-k, n-k/2])/Binomial[k, k/2]; Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 08 2011, updated Jan 16 2014 *)
  • PARI
    T(n, k) = if(k%2==0, binomial(2*n-k, n-k/2)*binomial(n-k/2,k/2)/binomial(k,k/2), 4^(n-k)*binomial(n-(k-1)/2-1, (k-1)/2));
    for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 20 2019
    
  • Sage
    def T(n, k):
        if (mod(k,2)==0): return binomial(2*n-k, n-k/2)*binomial(n-k/2,k/2)/binomial(k,k/2)
        else: return 4^(n-k)*binomial(n-(k-1)/2-1, (k-1)/2)
    [[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jul 20 2019
    

Formula

a(n, 2*k+1) = binomial(n-k-1, k)*4^(n-2*k-1), a(n, 2*k) = binomial(2*(n-k), n-k)*binomial(n-k, k)/binomial(2*k, k), k >= 0, n >= m >= 0; a(n, m) := 0 if n
Column recursion: a(n, m)=2*(2*n-m-1)*a(n-1, m)/(n-m), n>m >= 0, a(m, m) := 1.
G.f. for column m: cbie(x)*(x*cbie(x))^m, with cbie(x) := 1/sqrt(1-4*x).
G.f.: 1/(1-x*y-2*x/(1-x/(1-x/(1-x/(1-x/(1-... (continued fraction). - Paul Barry, May 06 2009
Sum_{k>=0} T(n,2*k)*(-1)^k*A000108(k) = A000108(n+1). - Philippe Deléham, Jan 30 2012
Sum_{k=0..floor(n/2)} T(n-k,n-2*k) = A098615(n). - Philippe Deléham, Feb 01 2012
T(n,k) = 4*T(n-1,k) + T(n-2,k-2) for k>=1. - Philippe Deléham, Feb 02 2012
Vertical recurrence: T(n,k) = 1*T(n-1,k-1) + 2*T(n-2,k-1) + 6*T(n-3,k-1) + 20*T(n-4,k-1) + ... for k >= 1 (the coefficients 1, 2, 6, 20, ... are the central binomial coefficients A000984). - Peter Bala, Oct 17 2015

A020920 Expansion of 1/(1-4*x)^(9/2).

Original entry on oeis.org

1, 18, 198, 1716, 12870, 87516, 554268, 3325608, 19122246, 106234700, 573667380, 3024791640, 15628090140, 79342611480, 396713057400, 1957117749840, 9540949030470, 46021048264620, 219878341708740, 1041528987041400, 4895186239094580, 22844202449108040
Offset: 0

Keywords

Comments

Also convolution of A000984 with A038846, also convolution of A000302 with A020918, also convolution of A002457 with A038845, also convolution of A002697 with A002802. - Rui Duarte, Oct 08 2011

Crossrefs

Programs

  • GAP
    List([0..30], n-> Binomial(n+4, 4)*Binomial(2*(n+4), n+4)/70) # G. C. Greubel, Jul 20 2019
  • Magma
    [(2*n+7)*(2*n+5)*(2*n+3)*(2*n+1)*Binomial(2*n, n)/105: n in [0..30]]; // Vincenzo Librandi, Jul 05 2013
    
  • Maple
    seq(binomial(2*n+8, n+4)*binomial(n+4, n)/70, n=0..30); # Zerinvary Lajos, May 05 2007
  • Mathematica
    CoefficientList[Series[1/(1-4x)^(9/2), {x,0,30}], x] (* Vincenzo Librandi, Jul 05 2013 *)
  • PARI
    vector(30, n, n--; m=n+4; binomial(m, 4)*binomial(2*m, m)/70) \\ G. C. Greubel, Jul 20 2019
    
  • Sage
    [binomial(n+4, 4)*binomial(2*(n+4), n+4)/70 for n in (0..30)] # G. C. Greubel, Jul 20 2019
    

Formula

a(n) = binomial(n+4, 4)*A000984(n+4)/A000984(4), where A000984 are the central binomial coefficients. - Wolfdieter Lang
a(n) = Sum_{ a+b+c+d+e+f+g+h+i=n} f(a)*f(b)*f(c)*f(d)*f(e)*f(f)*f(g) *f(h)*f(i) with f(n)=A000984(n). - Philippe Deléham, Jan 22 2004
a(n) = A000332(n+4)*A000984(n+4)/70. - Zerinvary Lajos, May 05 2007
From Rui Duarte, Oct 08 2011: (Start)
a(n) = ((2n+7)(2n+5)(2n+3)(2n+1)/(7*5*3*1)) * binomial(2n, n).
a(n) = binomial(2n+8, 8) * binomial(2n, n) / binomial(n+4, 4).
a(n) = binomial(n+4, 4) * binomial(2n+8, n+4) / binomial(8, 4). (End)
Boas-Buck recurrence: a(n) = (18/n)*Sum_{k=0..n-1} 4^(n-k-1)*a(k), n >= 1, a(0) = 1. Proof from a(n) = A046521(n+4, 4). See a comment there.
From Amiram Eldar, Mar 25 2022: (Start)
Sum_{n>=0} 1/a(n) = 1148/5 - 42*sqrt(3)*Pi.
Sum_{n>=0} (-1)^n/a(n) = 700*sqrt(5)*log(phi) - 11284/15, where phi is the golden ratio (A001622). (End)

A036071 Expansion of 1/(1-5*x)^5.

Original entry on oeis.org

1, 25, 375, 4375, 43750, 393750, 3281250, 25781250, 193359375, 1396484375, 9775390625, 66650390625, 444335937500, 2905273437500, 18676757812500, 118286132812500, 739288330078125, 4566192626953125, 27904510498046875
Offset: 0

Keywords

Comments

With a different offset, number of n-permutations (n=5) of 6 objects u, v, w, z, x, y with repetition allowed, containing exactly four (4)u's. Example: a(1)=25 because we have uuuuv, uuuvu, uuvuu, uvuuu, vuuuu, uuuuw, uuuwu, uuwuu, uwuuu, wuuuu, uuuuz, uuuzu, uuzuu, uzuuu, zuuuu, uuuux, uuuxu, uuxuu, uxuuu, xuuuu uuuuy, uuuyu, uuyuu, uyuuu, yuuuu. - Zerinvary Lajos, Jun 12 2008

Crossrefs

Programs

  • Maple
    seq(binomial(n+4,4)*5^n,n=0..18); # Zerinvary Lajos, Jun 12 2008
  • Mathematica
    CoefficientList[Series[1/(1-5x)^5,{x,0,30}],x] (* or *) LinearRecurrence[ {25,-250,1250,-3125,3125},{1,25,375,4375,43750},30] (* Harvey P. Dale, Mar 20 2013 *)
  • Sage
    [lucas_number2(n, 5, 0)*binomial(n,4)/5^4 for n in range(4, 23)] # Zerinvary Lajos, Mar 12 2009

Formula

a(n) = binomial(n+4, 4)*5^n;
g.f. 1/(1-5*x)^5.
a(n) = 25*a(n-1) - 250*a(n-2) + 1250*a(n-3) - 3125*a(n-4) + 3125*a(n-5), a(0)=1, a(1)=25, a(2)=375, a(3)=4375, a(4)=43750. - Harvey P. Dale, Mar 20 2013

A020922 Expansion of 1/(1-4*x)^(11/2).

Original entry on oeis.org

1, 22, 286, 2860, 24310, 184756, 1293292, 8498776, 53117350, 318704100, 1848483780, 10418726760, 57302997180, 308554600200, 1630931458200, 8480843582640, 43464323361030, 219878341708740, 1099391708543700, 5439095821216200, 26651569523959380, 129450480544945560
Offset: 0

Keywords

Comments

Also convolution of A000984 with A040075, also convolution of A000302 with A020920, also convolution of A002457 with A038846, also convolution of A002697 with A020918, also convolution of A002802 with A038845. - Rui Duarte, Oct 08 2011

Programs

  • GAP
    List([0..30], n-> Binomial(n+5, 5)*Binomial(2*n+10, n+5)/252); # G. C. Greubel, Jul 20 2019
  • Magma
    [(2*n+9)*(2*n+7)*(2*n+5)*(2*n+3)*(2*n+1)*Binomial(2*n, n)/945: n in [0..30]] // Vincenzo Librandi, Jul 05 2013
    
  • Mathematica
    CoefficientList[Series[1/(1-4x)^(11/2), {x,0,30}], x] (* Vincenzo Librandi, Jul 05 2013 *)
  • PARI
    vector(30, n, n--; m=n+5; binomial(m, 5)*binomial(2*m, m)/252) \\ G. C. Greubel, Jul 20 2019
    
  • Sage
    [binomial(n+5, 5)*binomial(2*n+10, n+5)/252 for n in (0..30)] # G. C. Greubel, Jul 20 2019
    

Formula

a(n) = binomial(n+5, 5)*A000984(n+5)/A000984(5), where A000984 are central binomial coefficients. - Wolfdieter Lang
From Rui Duarte, Oct 08 2011: (Start)
a(n) = ((2n+9)(2n+7)(2n+5)(2n+3)(2n+1)/(9*7*5*3*1)) * binomial(2n, n).
a(n) = binomial(2n+10, 10) * binomial(2n, n) / binomial(n+5, 5).
a(n) = binomial(n+5, 5) * binomial(2n+10, n+5) / binomial(10, 5).
a(n) = Sum_{ i_1+i_2+i_3+i_4+i_5+i_6+i_7+i_8+i_9+i_10+i_11 = n } f(i_1)* f(i_2)*f(i_3)*f(i_4)*f(i_5)*f(i_6)*f(i_7)*f(i_8)*f(i_9)*f(i_10)*f(i_11) with f(k)=A000984(k). (End)
Boas-Buck recurrence: a(n) = (22/n)*Sum_{k=0..n-1} 4^(n-k-1)*a(k), n >= 1, a(0) = 1. Proof from a(n) = A046521(n+5, 5). See a comment there. - Wolfdieter Lang, Aug 10 2017
From Amiram Eldar, Mar 25 2022: (Start)
Sum_{n>=0} 1/a(n) = 162*sqrt(3)*Pi - 30816/35.
Sum_{n>=0} (-1)^n/a(n) = 4500*sqrt(5)*log(phi) - 33888/7, where phi is the golden ratio (A001622). (End)
Showing 1-10 of 21 results. Next