A036070
Expansion of (-1+1/(1-4*x)^4)/(16*x); related to A038846.
Original entry on oeis.org
1, 10, 80, 560, 3584, 21504, 122880, 675840, 3604480, 18743296, 95420416, 477102080, 2348810240, 11408506880, 54760833024, 260113956864, 1224065679360, 5712306503680, 26456998543360, 121702193299456
Offset: 0
Original entry on oeis.org
1, 17, 178, 1477, 10654, 69930, 428772, 2496813, 13962982, 75582078, 398302268, 2052354850, 10375356460, 51596749300, 252953904072, 1224672639357, 5863899363510, 27801377704310, 130648178243660, 609082400931158
Offset: 0
-
m:=20; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1-Sqrt(1-4*x))/(2*x*(1-4*x)^4) )); // G. C. Greubel, Feb 17 2019
-
CoefficientList[Series[(1-Sqrt[1-4*x])/(2*x*(1-4*x)^4), {x, 0, 20}], x] (* G. C. Greubel, Feb 17 2019 *)
-
my(x='x+O('x^20)); Vec((1-sqrt(1-4*x))/(2*x*(1-4*x)^4)) \\ G. C. Greubel, Feb 17 2019
-
((1-sqrt(1-4*x))/(2*x*(1-4*x)^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Feb 17 2019
A042940
Convolution of Catalan numbers A000108(n+1), n >= 0, with A038846.
Original entry on oeis.org
1, 18, 197, 1694, 12586, 84708, 530733, 3149542, 17910398, 98409532, 525628194, 2741723180, 14015785460, 70417793992, 348499310973, 1702076053686, 8216326834550, 39251274184780, 185770424237398, 871859230081092
Offset: 0
A075513
Triangle read by rows. T(n, m) are the coefficients of Sidi polynomials.
Original entry on oeis.org
1, -1, 2, 1, -8, 9, -1, 24, -81, 64, 1, -64, 486, -1024, 625, -1, 160, -2430, 10240, -15625, 7776, 1, -384, 10935, -81920, 234375, -279936, 117649, -1, 896, -45927, 573440, -2734375, 5878656, -5764801, 2097152, 1, -2048, 183708, -3670016, 27343750, -94058496, 161414428, -134217728, 43046721
Offset: 1
The triangle T(n, m) begins:
n\m 0 1 2 3 4 5 6 7 8
1: 1
2: -1 2
3: 1 -8 9
4: -1 24 -81 64
5: 1 -64 486 -1024 625
6: -1 160 -2430 10240 -15625 7776
7: 1 -384 10935 -81920 234375 -279936 117649
8: -1 896 -45927 573440 -2734375 5878656 -5764801 2097152
9: 1 -2048 183708 -3670016 27343750 -94058496 161414428 -134217728 4304672
[Reformatted by _Wolfdieter Lang_, Oct 12 2022]
-----------------------------------------------------------------------------
p(2,x) = -1+2*x = (1/(2*x))*x*(d/dx)*x*(d/dx)*(x-1)^2.
- A. Sidi, Practical Extrapolation Methods: Theory and Applications, Cambridge University Press, Cambridge, 2003.
- Wolfdieter Lang, On a Certain Family of Sidi Polynomials, May 2023.
- Harlan J. Brothers, Pascal's triangle, Sidi polynomials, and powers of e, Missouri J. Math. Sci. (2025) Vol. 37, No. 1, 67-78.
- Doron S. Lubinsky and Herbert Stahl, Some Explicit Biorthogonal Polynomials, (IN) Approximation Theory XI, (C.K. Chui, M. Neamtu, L. Schumaker, eds.), Nashboro Press, Nashville, 2005, pp. 279-285.
- Avram Sidi, Numerical Quadrature and Nonlinear Sequence Transformations; Unified Rules for Efficient Computation of Integrals with Algebraic and Logarithmic Endpoint Singularities, Math. Comp., 35 (1980), 851-874.
-
# Assuming offset 0.
seq(seq((-1)^(n-k)*binomial(n, k)*(k+1)^n, k=0..n), n=0..8);
# Alternative:
egf := x -> 1/(exp(LambertW(-exp(-x)*x*y) + x) - x*y):
ser := x -> series(egf(x), x, 12):
row := n -> seq(coeff(n!*coeff(ser(x), x, n), y, k), k=0..n):
seq(print(row(n)), n = 0..8); # Peter Luschny, Oct 21 2022
-
p[n_, x_] := p[n, x] = Nest[ x*D[#, x]& , (x-1)^n, n]/(n*x); a[n_, m_] := Coefficient[ p[n, x], x, m]; Table[a[n, m], {n, 1, 9}, {m, 0, n-1}] // Flatten (* Jean-François Alcover, Jul 03 2013 *)
-
tabl(nn) = {for (n=1, nn, for (m=0, n-1, print1((-1)^(n-m-1)*binomial(n-1, m)*(m+1)^(n-1), ", ");); print(););} \\ Michel Marcus, May 17 2013
A057524
Number of 3 x n binary matrices without unit columns up to row and column permutations.
Original entry on oeis.org
1, 3, 7, 14, 25, 41, 64, 95, 136, 189, 256, 339, 441, 564, 711, 885, 1089, 1326, 1600, 1914, 2272, 2678, 3136, 3650, 4225, 4865, 5575, 6360, 7225, 8175, 9216, 10353, 11592, 12939, 14400, 15981, 17689, 19530, 21511, 23639, 25921, 28364, 30976
Offset: 0
There are 7 binary 3x2 matrices without unit columns up to row and column permutations:
[0 0] [0 0] [0 0] [0 1] [0 1] [0 1] [1 1]
[0 0] [0 1] [1 1] [0 1] [1 0] [1 1] [1 1]
[0 0] [0 1] [1 1] [0 1] [1 1] [1 1] [1 1].
- Author?, Table of n, a(n) for n = 0..1374
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,0,1,2,-3,1).
-
CoefficientList[ Series[ 1/(1 - x^3)/(1 - x^2)/(1 - x)^3, {x, 0, 42}], x] (* Jean-François Alcover, Mar 26 2013 *)
A040075
5-fold convolution of A000302 (powers of 4); expansion of 1/(1-4*x)^5.
Original entry on oeis.org
1, 20, 240, 2240, 17920, 129024, 860160, 5406720, 32440320, 187432960, 1049624576, 5725224960, 30534533120, 159719096320, 821412495360, 4161823309824, 20809116549120, 102821517066240, 502682972323840, 2434043865989120, 11683410556747776, 55635288365465600
Offset: 0
-
List([0..30], n-> 4^n*Binomial(n+4, 4)); # G. C. Greubel, Jul 20 2019
-
[4^n*Binomial(n+4, 4): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
seq(seq(binomial(i, j)*4^(i-4), j =i-4), i=4..22); # Zerinvary Lajos, Dec 03 2007
seq(binomial(n+4,4)*4^n,n=0..30); # Zerinvary Lajos, May 19 2008
spec := [S, {B=Set(Z, 0 <= card), S=Prod(Z, Z, Z, Z, B, B, B, B)}, labeled]: seq(combstruct[count](spec, size=n)/24, n=4..34); # Zerinvary Lajos, Apr 05 2009
-
Table[Binomial[n+4,4]*4^n, {n,0,30}] (* Michael De Vlieger, Aug 21 2015 *)
-
vector(30, n, n--; 4^n*binomial(n+4, 4)) \\ G. C. Greubel, Jul 20 2019
-
[lucas_number2(n, 4, 0)*binomial(n,4)/2^8 for n in range(4, 34)] # Zerinvary Lajos, Mar 11 2009
A054335
A convolution triangle of numbers based on A000984 (central binomial coefficients of even order).
Original entry on oeis.org
1, 2, 1, 6, 4, 1, 20, 16, 6, 1, 70, 64, 30, 8, 1, 252, 256, 140, 48, 10, 1, 924, 1024, 630, 256, 70, 12, 1, 3432, 4096, 2772, 1280, 420, 96, 14, 1, 12870, 16384, 12012, 6144, 2310, 640, 126, 16, 1, 48620, 65536, 51480, 28672, 12012, 3840, 924, 160, 18, 1
Offset: 0
Triangle begins:
1;
2, 1;
6, 4, 1;
20, 16, 6, 1;
70, 64, 30, 8, 1;
252, 256, 140, 48, 10, 1;
924, 1024, 630, 256, 70, 12, 1; ...
Fourth row polynomial (n=3): p(3,x) = 20 + 16*x + 6*x^2 + x^3.
From _Paul Barry_, May 06 2009: (Start)
Production matrix begins
2, 1;
2, 2, 1;
0, 2, 2, 1;
-2, 0, 2, 2, 1;
0, -2, 0, 2, 2, 1;
4, 0, -2, 0, 2, 2, 1;
0, 4, 0, -2, 0, 2, 2, 1;
-10, 0, 4, 0, -2, 0, 2, 2, 1;
0, -10, 0, 4, 0, -2, 0, 2, 2, 1; (End)
-
T:= function(n, k)
if k mod 2=0 then return Binomial(2*n-k, n-Int(k/2))*Binomial(n-Int(k/2),Int(k/2))/Binomial(k,Int(k/2));
else return 4^(n-k)*Binomial(n-Int((k-1)/2)-1, Int((k-1)/2));
fi;
end;
Flat(List([0..10], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Jul 20 2019
-
T:= func< n, k | (k mod 2) eq 0 select Binomial(2*n-k, n-Floor(k/2))* Binomial(n-Floor(k/2),Floor(k/2))/Binomial(k,Floor(k/2)) else 4^(n-k)*Binomial(n-Floor((k-1)/2)-1, Floor((k-1)/2)) >;
[[T(n,k): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jul 20 2019
-
A054335 := proc(n,k)
if k <0 or k > n then
0 ;
elif type(k,odd) then
kprime := floor(k/2) ;
binomial(n-kprime-1,kprime)*4^(n-k) ;
else
kprime := k/2 ;
binomial(2*n-k,n-kprime)*binomial(n-kprime,kprime)/binomial(k,kprime) ;
end if;
end proc: # R. J. Mathar, Mar 12 2013
# Uses function PMatrix from A357368. Adds column 1,0,0,0,... to the left.
PMatrix(10, n -> binomial(2*(n-1), n-1)); # Peter Luschny, Oct 19 2022
-
Flatten[ CoefficientList[#1, x] & /@ CoefficientList[ Series[1/(Sqrt[1 - 4*z] - x*z), {z, 0, 9}], z]] (* or *)
a[n_, k_?OddQ] := 4^(n-k)*Binomial[(2*n-k-1)/2, (k-1)/2]; a[n_, k_?EvenQ] := (Binomial[n-k/2, k/2]*Binomial[2*n-k, n-k/2])/Binomial[k, k/2]; Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 08 2011, updated Jan 16 2014 *)
-
T(n, k) = if(k%2==0, binomial(2*n-k, n-k/2)*binomial(n-k/2,k/2)/binomial(k,k/2), 4^(n-k)*binomial(n-(k-1)/2-1, (k-1)/2));
for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 20 2019
-
def T(n, k):
if (mod(k,2)==0): return binomial(2*n-k, n-k/2)*binomial(n-k/2,k/2)/binomial(k,k/2)
else: return 4^(n-k)*binomial(n-(k-1)/2-1, (k-1)/2)
[[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jul 20 2019
A020920
Expansion of 1/(1-4*x)^(9/2).
Original entry on oeis.org
1, 18, 198, 1716, 12870, 87516, 554268, 3325608, 19122246, 106234700, 573667380, 3024791640, 15628090140, 79342611480, 396713057400, 1957117749840, 9540949030470, 46021048264620, 219878341708740, 1041528987041400, 4895186239094580, 22844202449108040
Offset: 0
Cf.
A000302,
A000332,
A000984,
A001622,
A002457,
A002697,
A002802,
A020918,
A038845,
A038846,
A046521 (fifth column).
-
List([0..30], n-> Binomial(n+4, 4)*Binomial(2*(n+4), n+4)/70) # G. C. Greubel, Jul 20 2019
-
[(2*n+7)*(2*n+5)*(2*n+3)*(2*n+1)*Binomial(2*n, n)/105: n in [0..30]]; // Vincenzo Librandi, Jul 05 2013
-
seq(binomial(2*n+8, n+4)*binomial(n+4, n)/70, n=0..30); # Zerinvary Lajos, May 05 2007
-
CoefficientList[Series[1/(1-4x)^(9/2), {x,0,30}], x] (* Vincenzo Librandi, Jul 05 2013 *)
-
vector(30, n, n--; m=n+4; binomial(m, 4)*binomial(2*m, m)/70) \\ G. C. Greubel, Jul 20 2019
-
[binomial(n+4, 4)*binomial(2*(n+4), n+4)/70 for n in (0..30)] # G. C. Greubel, Jul 20 2019
A036071
Expansion of 1/(1-5*x)^5.
Original entry on oeis.org
1, 25, 375, 4375, 43750, 393750, 3281250, 25781250, 193359375, 1396484375, 9775390625, 66650390625, 444335937500, 2905273437500, 18676757812500, 118286132812500, 739288330078125, 4566192626953125, 27904510498046875
Offset: 0
-
seq(binomial(n+4,4)*5^n,n=0..18); # Zerinvary Lajos, Jun 12 2008
-
CoefficientList[Series[1/(1-5x)^5,{x,0,30}],x] (* or *) LinearRecurrence[ {25,-250,1250,-3125,3125},{1,25,375,4375,43750},30] (* Harvey P. Dale, Mar 20 2013 *)
-
[lucas_number2(n, 5, 0)*binomial(n,4)/5^4 for n in range(4, 23)] # Zerinvary Lajos, Mar 12 2009
A020922
Expansion of 1/(1-4*x)^(11/2).
Original entry on oeis.org
1, 22, 286, 2860, 24310, 184756, 1293292, 8498776, 53117350, 318704100, 1848483780, 10418726760, 57302997180, 308554600200, 1630931458200, 8480843582640, 43464323361030, 219878341708740, 1099391708543700, 5439095821216200, 26651569523959380, 129450480544945560
Offset: 0
Cf.
A000302,
A000984,
A001622,
A002457,
A002697,
A002802,
A020918,
A020920,
A038845,
A038846,
A040075,
A046521 (sixth column).
-
List([0..30], n-> Binomial(n+5, 5)*Binomial(2*n+10, n+5)/252); # G. C. Greubel, Jul 20 2019
-
[(2*n+9)*(2*n+7)*(2*n+5)*(2*n+3)*(2*n+1)*Binomial(2*n, n)/945: n in [0..30]] // Vincenzo Librandi, Jul 05 2013
-
CoefficientList[Series[1/(1-4x)^(11/2), {x,0,30}], x] (* Vincenzo Librandi, Jul 05 2013 *)
-
vector(30, n, n--; m=n+5; binomial(m, 5)*binomial(2*m, m)/252) \\ G. C. Greubel, Jul 20 2019
-
[binomial(n+5, 5)*binomial(2*n+10, n+5)/252 for n in (0..30)] # G. C. Greubel, Jul 20 2019
Showing 1-10 of 21 results.
Next
Comments