cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A045492 Convolution of A000108 (Catalan numbers) with A020920.

Original entry on oeis.org

1, 19, 218, 1955, 15086, 105102, 679764, 4154403, 24281510, 136887322, 749032492, 3997228430, 20880823820, 107088473660, 540472210728, 2689562860323, 13217998697430, 64240718824930, 309108505173820
Offset: 0

Views

Author

Keywords

Comments

Also convolution of A042985 with A000984 (central binomial coefficients); also convolution of A045724 with A000302 (powers of 4).

Programs

  • GAP
    List([0..20], n-> Binomial(n+5, 4)*(Binomial(2*n+10, n+5)/140 - 2^(2*n+3)/(n+5))); # G. C. Greubel, Jan 13 2020
  • Magma
    [Binomial(n+5, 4)*(Binomial(2*n+10, n+5)/140 - 2^(2*n+3)/(n+5)): n in [0..20]]; // G. C. Greubel, Jan 13 2020
    
  • Maple
    seq(coeff(series((sqrt(1-4*x) +4*x-1)/(2*x*(1-4*x)^5), x, n+1), x, n), n = 0..20); # G. C. Greubel, Jan 13 2020
  • Mathematica
    Table[Binomial[n+5, 4]*(Binomial[2*n+10, n+5]/140 - 2^(2*n+3)/(n+5)), {n,0,20}] (* G. C. Greubel, Jan 13 2020 *)
  • PARI
    vector(20, n, binomial(n+4, 4)*(binomial(2*n+8, n+4)/140 - 2^(2*n+1)/(n+4)) ) \\ G. C. Greubel, Jan 13 2020
    
  • Sage
    [binomial(n+5, 4)*(binomial(2*n+10, n+5)/140 - 2^(2*n+3)/(n+5)) for n in (0..20)] # G. C. Greubel, Jan 13 2020
    

Formula

a(n) = binomial(n+5, 4)*(A000984(n+5)/A000984(4) - 4^(n+2)/(n+5))/2, A000984(n)=binomial(2*n, n);
G.f.: c(x)/(1-4*x)^(9/2) = (2-c(x))/(1-4*x)^5, where c(x) = g.f. for Catalan numbers.

A045505 Convolution of A000108 (Catalan numbers) with A040075.

Original entry on oeis.org

1, 21, 262, 2525, 20754, 152946, 1040556, 6659037, 40599130, 237978598, 1350216660, 7453221490, 40188242420, 212349718980, 1102352779992, 5634083759325, 28400234400810, 141402315307550, 696257439473860
Offset: 0

Views

Author

Keywords

Comments

Also convolution of A045492 with A000984 (central binomial coefficients); also convolution of A042985 with A000302 (powers of 4).

Programs

  • GAP
    List([0..20], n-> Binomial(n+5,4)*(2^(2*n+1) - Binomial(2*n+10,n+5)/140)); # G. C. Greubel, Jan 13 2020
  • Magma
    [Binomial(n+5,4)*(2^(2*n+1) - Binomial(2*n+10,n+5)/140): n in [0..20]]; // G. C. Greubel, Jan 13 2020
    
  • Maple
    seq(coeff(series((1-sqrt(1-4*x))/(2*x*(1-4*x)^5), x, n+1), x, n), n = 0..20); # G. C. Greubel, Jan 13 2020
  • Mathematica
    Table[Binomial[n+5,4]*(2^(2*n+1) -Binomial[2*n+10, n+5]/140), {n,0,20}] (* G. C. Greubel, Jan 13 2020 *)
  • PARI
    vector(21, n, binomial(n+5,4)*(2^(2*n+1) -binomial(2*n+10,n+5)/140)) \\ G. C. Greubel, Jan 13 2020
    
  • Sage
    [binomial(n+5,4)*(2^(2*n+1) - binomial(2*n+10,n+5)/140) for n in (0..20)] # G. C. Greubel, Jan 13 2020
    

Formula

a(n) = binomial(n+5, 4)*(4^(n+1) - A000984(n+5)/A000984(4))/2, A000984(n) = binomial(2*n, n).
G.f. c(x)/(1-4*x)^5, where c(x) = g.f. for Catalan numbers.

A046527 A triangle related to A000108 (Catalan) and A000302 (powers of 4).

Original entry on oeis.org

1, 1, 1, 2, 5, 1, 5, 22, 9, 1, 14, 93, 58, 13, 1, 42, 386, 325, 110, 17, 1, 132, 1586, 1686, 765, 178, 21, 1, 429, 6476, 8330, 4746, 1477, 262, 25, 1, 1430, 26333, 39796, 27314, 10654, 2525, 362, 29, 1, 4862, 106762, 185517, 149052, 69930, 20754, 3973, 478, 33, 1
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins as:
     1;
     1,      1;
     2,      5,      1;
     5,     22,      9,      1;
    14,     93,     58,     13,     1;
    42,    386,    325,    110,    17,     1;
   132,   1586,   1686,    765,   178,    21,    1;
   429,   6476,   8330,   4746,  1477,   262,   25,   1;
  1430,  26333,  39796,  27314, 10654,  2525,  362,  29,  1;
  4862, 106762, 185517, 149052, 69930, 20754, 3973, 478, 33,  1;
		

Crossrefs

Column sequences are: A000108 (k=0), A000346 (k=1), A018218 (k=2), A042941 (k=3), A042985 (k=4), A045505 (k=5), A045622 (k=6).
Row sums: A046814.

Programs

  • Magma
    A046527:= func< n,k | k eq 0 select Catalan(n) else (1/2)*Binomial(n, k-1)*(4^(n-k+1) - Binomial(2*n, n)/(k*Catalan(k-1))) >;
    [A046527(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 28 2024
    
  • Mathematica
    T[n_, k_]:= If[k==0, CatalanNumber[n], (1/2)*Binomial[n,k-1]*(4^(n-k+ 1) -Binomial[2*n,n]/Binomial[2*(k-1),k-1])];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 28 2024 *)
  • SageMath
    def A046527(n,k):
        if k==0: return catalan_number(n)
        else: return (1/2)*binomial(n, k-1)*(4^(n-k+1) - binomial(2*n, n)/binomial(2*(k-1), k-1))
    flatten([[A046527(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 28 2024

Formula

T(n, k) = binomial(n, k-1)*( 4^(n-k+1) - binomial(2*n, n)/binomial(2*(k-1), k-1) )/2, for n >= k >= 0, with T(n, 0) = A000108(n).
G.f. for column k: c(x)*(x/(1-4*x))^m, where c(x) = g.f. for Catalan numbers (A000108).

A090299 Table T(n,k), n>=0 and k>=0, read by antidiagonals : the k-th column given by the k-th polynomial K_k related to A090285.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 5, 10, 5, 1, 14, 35, 22, 7, 1, 42, 126, 93, 38, 9, 1, 132, 462, 386, 187, 58, 11, 1, 429, 1716, 1586, 874, 325, 82, 13, 1, 1430, 6435, 6476, 3958, 1686, 515, 110, 15, 1, 4862, 24310, 26333, 17548, 8330, 2934, 765, 142, 17, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 25 2004

Keywords

Comments

Read as a number triangle, this is the Riordan array (c(x),x/sqrt(1-4x)) where c(x) is the g.f. of A000108. - Paul Barry, May 16 2005

Examples

			row n=0 : 1, 1, 2, 5, 14, 42, 132, 429, ... see A000108.
row n=1 : 1, 3, 10, 35, 126, 462, 1716, 6435, ... see A001700.
row n=2 : 1, 5, 22, 93, 386, 1586, 6476, ... see A000346.
row n=3 : 1, 7, 38, 187, 874, 3958, 17548, ... see A000531.
row n=4 : 1, 9, 58, 325, 1686, 8330, 39796, ... see A018218.
		

Crossrefs

Other rows : A029887, A042941, A045724, A042985, A045492. Columns : A000012, A005408. Row n is the convolution of the row (n-j) with A000984, A000302, A002457, A002697 (first term omitted), A002802, A038845, A020918, A038846, A020920 for j=1, 2, ..9 respectively.

Formula

T(n, k) = K_k(n)= Sum_{j>=0} A090285(k, j)*2^j*binomial(n, j). T(n, 1) = 2*n+1. T(n, 2) = 2*A028387(n).

Extensions

Corrected by Alford Arnold, Oct 18 2006
Showing 1-4 of 4 results.