A036083
Expansion of (-1+1/(1-5*x)^5)/(25*x); related to A036071.
Original entry on oeis.org
1, 15, 175, 1750, 15750, 131250, 1031250, 7734375, 55859375, 391015625, 2666015625, 17773437500, 116210937500, 747070312500, 4731445312500, 29571533203125, 182647705078125, 1116180419921875, 6755828857421875
Offset: 0
-
LinearRecurrence[{25,-250,1250,-3125,3125},{1,15,175,1750,15750},20] (* Harvey P. Dale, Aug 29 2024 *)
-
[lucas_number2(n, 5, 0)*binomial(n,4)/5^6 for n in range(5, 24)] # Zerinvary Lajos, Mar 13 2009
A075513
Triangle read by rows. T(n, m) are the coefficients of Sidi polynomials.
Original entry on oeis.org
1, -1, 2, 1, -8, 9, -1, 24, -81, 64, 1, -64, 486, -1024, 625, -1, 160, -2430, 10240, -15625, 7776, 1, -384, 10935, -81920, 234375, -279936, 117649, -1, 896, -45927, 573440, -2734375, 5878656, -5764801, 2097152, 1, -2048, 183708, -3670016, 27343750, -94058496, 161414428, -134217728, 43046721
Offset: 1
The triangle T(n, m) begins:
n\m 0 1 2 3 4 5 6 7 8
1: 1
2: -1 2
3: 1 -8 9
4: -1 24 -81 64
5: 1 -64 486 -1024 625
6: -1 160 -2430 10240 -15625 7776
7: 1 -384 10935 -81920 234375 -279936 117649
8: -1 896 -45927 573440 -2734375 5878656 -5764801 2097152
9: 1 -2048 183708 -3670016 27343750 -94058496 161414428 -134217728 4304672
[Reformatted by _Wolfdieter Lang_, Oct 12 2022]
-----------------------------------------------------------------------------
p(2,x) = -1+2*x = (1/(2*x))*x*(d/dx)*x*(d/dx)*(x-1)^2.
- A. Sidi, Practical Extrapolation Methods: Theory and Applications, Cambridge University Press, Cambridge, 2003.
- Wolfdieter Lang, On a Certain Family of Sidi Polynomials, May 2023.
- Harlan J. Brothers, Pascal's triangle, Sidi polynomials, and powers of e, Missouri J. Math. Sci. (2025) Vol. 37, No. 1, 67-78.
- Doron S. Lubinsky and Herbert Stahl, Some Explicit Biorthogonal Polynomials, (IN) Approximation Theory XI, (C.K. Chui, M. Neamtu, L. Schumaker, eds.), Nashboro Press, Nashville, 2005, pp. 279-285.
- Avram Sidi, Numerical Quadrature and Nonlinear Sequence Transformations; Unified Rules for Efficient Computation of Integrals with Algebraic and Logarithmic Endpoint Singularities, Math. Comp., 35 (1980), 851-874.
-
# Assuming offset 0.
seq(seq((-1)^(n-k)*binomial(n, k)*(k+1)^n, k=0..n), n=0..8);
# Alternative:
egf := x -> 1/(exp(LambertW(-exp(-x)*x*y) + x) - x*y):
ser := x -> series(egf(x), x, 12):
row := n -> seq(coeff(n!*coeff(ser(x), x, n), y, k), k=0..n):
seq(print(row(n)), n = 0..8); # Peter Luschny, Oct 21 2022
-
p[n_, x_] := p[n, x] = Nest[ x*D[#, x]& , (x-1)^n, n]/(n*x); a[n_, m_] := Coefficient[ p[n, x], x, m]; Table[a[n, m], {n, 1, 9}, {m, 0, n-1}] // Flatten (* Jean-François Alcover, Jul 03 2013 *)
-
tabl(nn) = {for (n=1, nn, for (m=0, n-1, print1((-1)^(n-m-1)*binomial(n-1, m)*(m+1)^(n-1), ", ");); print(););} \\ Michel Marcus, May 17 2013
A036084
Expansion of 1/(1-6*x)^6.
Original entry on oeis.org
1, 36, 756, 12096, 163296, 1959552, 21555072, 221709312, 2161665792, 20175547392, 181579926528, 1584697540608, 13469929095168, 111904026329088, 911218500108288, 7289748000866304, 57406765506822144, 445746649817677824
Offset: 0
-
[6^n* Binomial(n+5, 5): n in [0..20]]; // Vincenzo Librandi, Oct 12 2011
-
seq(binomial(n+5,5)*6^n,n=0..17); # Zerinvary Lajos, Jun 16 2008
-
CoefficientList[Series[1/(1-6x)^6,{x,0,30}],x] (* or *) LinearRecurrence[ {36,-540,4320,-19440,46656,-46656},{1,36,756,12096,163296,1959552},30] (* Harvey P. Dale, Jul 31 2018 *)
-
[lucas_number2(n, 6, 0)*binomial(n,5)/6^5 for n in range(5, 23)] # Zerinvary Lajos, Mar 13 2009
A038243
Triangle whose (i,j)-th entry is 5^(i-j)*binomial(i,j).
Original entry on oeis.org
1, 5, 1, 25, 10, 1, 125, 75, 15, 1, 625, 500, 150, 20, 1, 3125, 3125, 1250, 250, 25, 1, 15625, 18750, 9375, 2500, 375, 30, 1, 78125, 109375, 65625, 21875, 4375, 525, 35, 1, 390625, 625000, 437500, 175000, 43750, 7000, 700, 40, 1, 1953125, 3515625, 2812500, 1312500, 393750, 78750, 10500, 900, 45, 1
Offset: 0
Triangle begins as:
1;
5, 1;
25, 10, 1;
125, 75, 15, 1;
625, 500, 150, 20, 1;
3125, 3125, 1250, 250, 25, 1;
15625, 18750, 9375, 2500, 375, 30, 1;
78125, 109375, 65625, 21875, 4375, 525, 35, 1;
390625, 625000, 437500, 175000, 43750, 7000, 700, 40, 1;
Sequences of the form q^(n-k)*binomial(n, k):
A007318 (q=1),
A038207 (q=2),
A027465 (q=3),
A038231 (q=4), this sequence (q=5),
A038255 (q=6),
A027466 (q=7),
A038279 (q=8),
A038291 (q=9),
A038303 (q=10),
A038315 (q=11),
A038327 (q=12),
A133371 (q=13),
A147716 (q=14),
A027467 (q=15).
-
[5^(n-k)*Binomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 12 2021
-
for i from 0 to 8 do seq(binomial(i, j)*5^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Dec 21 2007
# Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left.
PMatrix(10, n -> 5^(n-1)); # Peter Luschny, Oct 09 2022
-
With[{q=5}, Table[q^(n-k)*Binomial[n,k], {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, May 12 2021 *)
-
flatten([[5^(n-k)*binomial(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 12 2021
A053109
Expansion of 1/(1-10*x)^10.
Original entry on oeis.org
1, 100, 5500, 220000, 7150000, 200200000, 5005000000, 114400000000, 2431000000000, 48620000000000, 923780000000000, 16796000000000000, 293930000000000000, 4974200000000000000, 81719000000000000000
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (100, -4500, 120000, -2100000, 25200000, -210000000, 1200000000, -4500000000, 10000000000, -10000000000).
-
List([0..15],n->10^n*Binomial(n+9,9)); # Muniru A Asiru, Aug 16 2018
-
[10^n*Binomial(n+9, 9): n in [0..30]]; // G. C. Greubel, Aug 16 2018
-
seq(coeff(series(1/(1-10*x)^10, x, n+1), x, n), n = 0 .. 15); # Muniru A Asiru, Aug 16 2018
-
CoefficientList[Series[1/(1-10x)^10,{x,0,20}],x] (* or *) Table[10^n Binomial[n+9,9],{n,0,20}] (* Harvey P. Dale, May 19 2011 *)
-
vector(30,n,n--; 10^n*binomial(n+9, 9)) \\ G. C. Greubel, Aug 16 2018
-
[lucas_number2(n, 10, 0)*binomial(n,9)/10 ^9 for n in range(9, 24)] # Zerinvary Lajos, Mar 13 2009
A305837
Triangle read by rows: T(0,0) = 1; T(n,k) = 5*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, 5, 25, 1, 125, 10, 625, 75, 1, 3125, 500, 15, 15625, 3125, 150, 1, 78125, 18750, 1250, 20, 390625, 109375, 9375, 250, 1, 1953125, 625000, 65625, 2500, 25, 9765625, 3515625, 437500, 21875, 375, 1, 48828125, 19531250, 2812500, 175000, 4375, 30, 244140625, 107421875, 17578125, 1312500, 43750, 525, 1
Offset: 0
Triangle begins:
1;
5;
25, 1;
125, 10;
625, 75, 1;
3125, 500, 15;
15625, 3125, 150, 1;
78125, 18750, 1250, 20;
390625, 109375, 9375, 250, 1;
1953125, 625000, 65625, 2500, 25;
9765625, 3515625, 437500, 21875, 375, 1;
48828125, 19531250, 2812500, 175000, 4375, 30;
244140625, 107421875, 17578125, 1312500, 43750, 525, 1;
1220703125, 585937500, 107421875, 9375000, 393750, 7000, 35;
6103515625, 3173828125, 644531250, 64453125, 3281250, 78750, 700, 1;
30517578125, 17089843750, 3808593750, 429687500, 25781250, 787500, 10500, 40;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 92, 380, 382.
-
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 5 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten
A154128
a(n) = 5^n*(n+4)!/n!.
Original entry on oeis.org
24, 600, 9000, 105000, 1050000, 9450000, 78750000, 618750000, 4640625000, 33515625000, 234609375000, 1599609375000, 10664062500000, 69726562500000, 448242187500000, 2838867187500000, 17742919921875000, 109588623046875000
Offset: 0
-
[5^n*(n+4)*(n+3)*(n+2)*(n+1): n in [0..20]]; // Vincenzo Librandi, Aug 15 2011
-
LinearRecurrence[{25, -250, 1250, -3125, 3125}, {24, 600, 9000, 105000, 1050000}, 25] (* or *) Table[5^n*(n+4)*(n+3)*(n+2)*(n+1), {n,0,25}] (* G. C. Greubel, Sep 02 2016 *)
A173113
a(n) = binomial(n + 10, 10) * 5^n.
Original entry on oeis.org
1, 55, 1650, 35750, 625625, 9384375, 125125000, 1519375000, 17092968750, 180425781250, 1804257812500, 17222460937500, 157872558593750, 1396564941406250, 11970556640625000, 99754638671875000
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (55,-1375,20625,-206250,1443750,-7218750,25781250,-64453125,107421875,-107421875,48828125).
-
[5^n*Binomial(n+10, 10): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
Table[Binomial[n + 10, 10]*5^n, {n, 0, 20}]
A293270
a(n) = n^n*binomial(2*n-1, n).
Original entry on oeis.org
1, 1, 12, 270, 8960, 393750, 21555072, 1413199788, 107961384960, 9418192087590, 923780000000000, 100633991211229476, 12055263261877075968, 1575041416811693275900, 222887966509090352332800, 33962507149515380859375000, 5543988061027763016035205120
Offset: 0
-
Join[{1}, Table[n^n Binomial[2 n - 1, n], {n, 1, 16}]]
Join[{1}, Table[(-1)^n n^n Binomial[-n, n], {n, 1, 16}]]
Table[SeriesCoefficient[1/(1 - n x)^n, {x, 0, n}], {n, 0, 16}]
-
a(n) = n^n*binomial(2*n-1, n); \\ Altug Alkan, Oct 04 2017
Showing 1-9 of 9 results.
Comments