Original entry on oeis.org
1, 21, 262, 2525, 20754, 152946, 1040556, 6659037, 40599130, 237978598, 1350216660, 7453221490, 40188242420, 212349718980, 1102352779992, 5634083759325, 28400234400810, 141402315307550, 696257439473860
Offset: 0
-
List([0..20], n-> Binomial(n+5,4)*(2^(2*n+1) - Binomial(2*n+10,n+5)/140)); # G. C. Greubel, Jan 13 2020
-
[Binomial(n+5,4)*(2^(2*n+1) - Binomial(2*n+10,n+5)/140): n in [0..20]]; // G. C. Greubel, Jan 13 2020
-
seq(coeff(series((1-sqrt(1-4*x))/(2*x*(1-4*x)^5), x, n+1), x, n), n = 0..20); # G. C. Greubel, Jan 13 2020
-
Table[Binomial[n+5,4]*(2^(2*n+1) -Binomial[2*n+10, n+5]/140), {n,0,20}] (* G. C. Greubel, Jan 13 2020 *)
-
vector(21, n, binomial(n+5,4)*(2^(2*n+1) -binomial(2*n+10,n+5)/140)) \\ G. C. Greubel, Jan 13 2020
-
[binomial(n+5,4)*(2^(2*n+1) - binomial(2*n+10,n+5)/140) for n in (0..20)] # G. C. Greubel, Jan 13 2020
A059297
Triangle of idempotent numbers binomial(n,k)*k^(n-k), version 1.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 3, 6, 1, 0, 4, 24, 12, 1, 0, 5, 80, 90, 20, 1, 0, 6, 240, 540, 240, 30, 1, 0, 7, 672, 2835, 2240, 525, 42, 1, 0, 8, 1792, 13608, 17920, 7000, 1008, 56, 1, 0, 9, 4608, 61236, 129024, 78750, 18144, 1764, 72, 1, 0, 10, 11520, 262440
Offset: 0
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 3, 6, 1;
0, 4, 24, 12, 1;
0, 5, 80, 90, 20, 1;
0, 6, 240, 540, 240, 30, 1;
0, 7, 672, 2835, 2240, 525, 42, 1;
Row 4. Expansion of x^4 in terms of Abel polynomials:
x^4 = -4*x+24*x*(x+2)-12*x*(x+3)^2+x*(x+4)^3.
O.g.f. for column 2: A(-2,1/x) = x^2/(1-2*x)^3 = x^2+6*x^3+24*x^4+80*x^5+....
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43 and p. 135, [3i'].
- Alois P. Heinz, Rows n = 0..140, flattened
- Peter Bala, Diagonals of triangles with generating function exp(t*F(x)).
- G. Duchamp, K. A. Penson, A. I. Solomon, A. Horzela and P. Blasiak, One-parameter groups and combinatorial physics, arXiv:quant-ph/0401126, 2004.
- Emanuele Munarini, Combinatorial identities involving the central coefficients of a Sheffer matrix, Applicable Analysis and Discrete Mathematics (2019) Vol. 13, 495-517.
- Bruce E. Sagan, A note on Abel polynomials and rooted labeled forests. Discrete Mathematics 44(3): 293-298 (1983).
- J. Taylor, Formal group laws and hypergraph colorings, doctoral thesis, Univ. of Wash., 2016, p. 96, [_Tom Copeland_, Dec 20 2018].
- Eric Weisstein's World of Mathematics, Abel Polynomial
- Eric Weisstein's World of Mathematics, Idempotent Number
- Jian Zhou, On Some Mathematics Related to the Interpolating Statistics, arXiv:2108.10514 [math-ph], 2021.
-
/* As triangle */ [[Binomial(n,k)*k^(n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 22 2015
-
T:= (n, k)-> binomial(n, k) *k^(n-k):
seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Sep 05 2012
-
nn=10;f[list_]:=Select[list,#>0&];Prepend[Map[Prepend[#,0]&,Rest[Map[f,Range[0,nn]!CoefficientList[Series[Exp[y x Exp[x]],{x,0,nn}],{x,y}]]]],{1}]//Grid (* Geoffrey Critzer, Feb 09 2013 *)
t[n_, k_] := Binomial[n, k]*k^(n - k); Prepend[Flatten@Table[t[n, k], {n, 10}, {k, 0, n}], 1] (* Arkadiusz Wesolowski, Mar 23 2013 *)
-
# uses[bell_transform from A264428]
def A059297_row(n):
nat = [k for k in (1..n)]
return bell_transform(n, nat)
[A059297_row(n) for n in range(8)] # Peter Luschny, Dec 20 2015
A054335
A convolution triangle of numbers based on A000984 (central binomial coefficients of even order).
Original entry on oeis.org
1, 2, 1, 6, 4, 1, 20, 16, 6, 1, 70, 64, 30, 8, 1, 252, 256, 140, 48, 10, 1, 924, 1024, 630, 256, 70, 12, 1, 3432, 4096, 2772, 1280, 420, 96, 14, 1, 12870, 16384, 12012, 6144, 2310, 640, 126, 16, 1, 48620, 65536, 51480, 28672, 12012, 3840, 924, 160, 18, 1
Offset: 0
Triangle begins:
1;
2, 1;
6, 4, 1;
20, 16, 6, 1;
70, 64, 30, 8, 1;
252, 256, 140, 48, 10, 1;
924, 1024, 630, 256, 70, 12, 1; ...
Fourth row polynomial (n=3): p(3,x) = 20 + 16*x + 6*x^2 + x^3.
From _Paul Barry_, May 06 2009: (Start)
Production matrix begins
2, 1;
2, 2, 1;
0, 2, 2, 1;
-2, 0, 2, 2, 1;
0, -2, 0, 2, 2, 1;
4, 0, -2, 0, 2, 2, 1;
0, 4, 0, -2, 0, 2, 2, 1;
-10, 0, 4, 0, -2, 0, 2, 2, 1;
0, -10, 0, 4, 0, -2, 0, 2, 2, 1; (End)
-
T:= function(n, k)
if k mod 2=0 then return Binomial(2*n-k, n-Int(k/2))*Binomial(n-Int(k/2),Int(k/2))/Binomial(k,Int(k/2));
else return 4^(n-k)*Binomial(n-Int((k-1)/2)-1, Int((k-1)/2));
fi;
end;
Flat(List([0..10], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Jul 20 2019
-
T:= func< n, k | (k mod 2) eq 0 select Binomial(2*n-k, n-Floor(k/2))* Binomial(n-Floor(k/2),Floor(k/2))/Binomial(k,Floor(k/2)) else 4^(n-k)*Binomial(n-Floor((k-1)/2)-1, Floor((k-1)/2)) >;
[[T(n,k): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jul 20 2019
-
A054335 := proc(n,k)
if k <0 or k > n then
0 ;
elif type(k,odd) then
kprime := floor(k/2) ;
binomial(n-kprime-1,kprime)*4^(n-k) ;
else
kprime := k/2 ;
binomial(2*n-k,n-kprime)*binomial(n-kprime,kprime)/binomial(k,kprime) ;
end if;
end proc: # R. J. Mathar, Mar 12 2013
# Uses function PMatrix from A357368. Adds column 1,0,0,0,... to the left.
PMatrix(10, n -> binomial(2*(n-1), n-1)); # Peter Luschny, Oct 19 2022
-
Flatten[ CoefficientList[#1, x] & /@ CoefficientList[ Series[1/(Sqrt[1 - 4*z] - x*z), {z, 0, 9}], z]] (* or *)
a[n_, k_?OddQ] := 4^(n-k)*Binomial[(2*n-k-1)/2, (k-1)/2]; a[n_, k_?EvenQ] := (Binomial[n-k/2, k/2]*Binomial[2*n-k, n-k/2])/Binomial[k, k/2]; Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 08 2011, updated Jan 16 2014 *)
-
T(n, k) = if(k%2==0, binomial(2*n-k, n-k/2)*binomial(n-k/2,k/2)/binomial(k,k/2), 4^(n-k)*binomial(n-(k-1)/2-1, (k-1)/2));
for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 20 2019
-
def T(n, k):
if (mod(k,2)==0): return binomial(2*n-k, n-k/2)*binomial(n-k/2,k/2)/binomial(k,k/2)
else: return 4^(n-k)*binomial(n-(k-1)/2-1, (k-1)/2)
[[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jul 20 2019
A050982
5-idempotent numbers.
Original entry on oeis.org
1, 30, 525, 7000, 78750, 787500, 7218750, 61875000, 502734375, 3910156250, 29326171875, 213281250000, 1510742187500, 10458984375000, 70971679687500, 473144531250000, 3105010986328125, 20091247558593750, 128360748291015625, 810699462890625000
Offset: 5
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43.
Cf.
A001788,
A036216,
A040075,
A050988,
A050989,
A000389,
A054849,
A036219,
A045543,
A036084,
A140404,
A000389,
A054849,
A036219,
A045543,
A036084,
A140404.
-
[Binomial(n, 5)*5^(n-5): n in [5..25]]; // Vincenzo Librandi, Aug 12 2017
-
seq(binomial(n, 5)*5^(n-5), n=5..32); # Zerinvary Lajos, Jun 16 2008
-
CoefficientList[Series[1 / (1 - 5 x)^6, {x, 0, 33}], x] (* Vincenzo Librandi, Aug 12 2017 *)
-
a(n)=binomial(n, 5)*5^(n-5) \\ Charles R Greathouse IV, Sep 03 2011
A050988
6-idempotent numbers.
Original entry on oeis.org
1, 42, 1008, 18144, 272160, 3592512, 43110144, 480370176, 5043886848, 50438868480, 484213137408, 4489976365056, 40409787285504, 354362750042112, 3037395000360960, 25514118003032064, 210491473525014528, 1708695490967764992, 13669563927742119936, 107917609955858841600
Offset: 6
-
seq(binomial(n, 6)*6^(n-6), n=6..32); # Zerinvary Lajos, Jun 16 2008
A050988:=x^6/(1-6*x)^7; series(A050988,x,32); # Zerinvary Lajos, Aug 09 2008
-
a[n_] := Binomial[n, 6]*6^(n - 6); Array[a, 20, 6] (* Amiram Eldar, Apr 17 2022 *)
A020922
Expansion of 1/(1-4*x)^(11/2).
Original entry on oeis.org
1, 22, 286, 2860, 24310, 184756, 1293292, 8498776, 53117350, 318704100, 1848483780, 10418726760, 57302997180, 308554600200, 1630931458200, 8480843582640, 43464323361030, 219878341708740, 1099391708543700, 5439095821216200, 26651569523959380, 129450480544945560
Offset: 0
Cf.
A000302,
A000984,
A001622,
A002457,
A002697,
A002802,
A020918,
A020920,
A038845,
A038846,
A040075,
A046521 (sixth column).
-
List([0..30], n-> Binomial(n+5, 5)*Binomial(2*n+10, n+5)/252); # G. C. Greubel, Jul 20 2019
-
[(2*n+9)*(2*n+7)*(2*n+5)*(2*n+3)*(2*n+1)*Binomial(2*n, n)/945: n in [0..30]] // Vincenzo Librandi, Jul 05 2013
-
CoefficientList[Series[1/(1-4x)^(11/2), {x,0,30}], x] (* Vincenzo Librandi, Jul 05 2013 *)
-
vector(30, n, n--; m=n+5; binomial(m, 5)*binomial(2*m, m)/252) \\ G. C. Greubel, Jul 20 2019
-
[binomial(n+5, 5)*binomial(2*n+10, n+5)/252 for n in (0..30)] # G. C. Greubel, Jul 20 2019
A059300
Triangle of idempotent numbers binomial(n,k)*k^(n-k), version 4.
Original entry on oeis.org
1, 1, 2, 1, 6, 3, 1, 12, 24, 4, 1, 20, 90, 80, 5, 1, 30, 240, 540, 240, 6, 1, 42, 525, 2240, 2835, 672, 7, 1, 56, 1008, 7000, 17920, 13608, 1792, 8, 1, 72, 1764, 18144, 78750, 129024, 61236, 4608, 9, 1, 90, 2880, 41160, 272160, 787500, 860160, 262440, 11520, 10
Offset: 0
Triangle begins:
1;
1, 2;
1, 6, 3;
1, 12, 24, 4;
1, 20, 90, 80, 5;
1, 30, 240, 540, 240, 6;
1, 42, 525, 2240, 2835, 672, 7;
...
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43 and p. 135, [3i'].
-
/* As triangle: */ [[Binomial(n+1,n-k+1)*(n-k+1)^k: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 22 2015
-
t[n_, k_] := Binomial[n + 1, k]*(n - k + 1)^k; Flatten@Table[t[n, k], {n, 0, 9}, {k, 0, n}] (* Arkadiusz Wesolowski, Mar 23 2013 *)
-
for(n=0, 25, for(k=0, n, print1(binomial(n+1,k)*(n-k+1)^k, ", "))) \\ G. C. Greubel, Jan 05 2017
A045543
6-fold convolution of A000302 (powers of 4); expansion of 1/(1-4*x)^6.
Original entry on oeis.org
1, 24, 336, 3584, 32256, 258048, 1892352, 12976128, 84344832, 524812288, 3148873728, 18320719872, 103817412608, 574988746752, 3121367482368, 16647293239296, 87398289506304, 452414675091456, 2312341672689664, 11683410556747776, 58417052783738880, 289303499500421120
Offset: 0
-
List([0..30], n-> 4^n*Binomial(n+5,5)); # G. C. Greubel, Jul 20 2019
-
[4^n*Binomial(n+5, 5): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
seq(seq(binomial(i+5, j)*4^i, j =i), i=0..30); # Zerinvary Lajos, Dec 03 2007
seq(binomial(n+5,5)*4^n,n=0..30); # Zerinvary Lajos, Jun 16 2008
-
CoefficientList[Series[1/(1-4x)^6,{x,0,30}],x] (* or *) LinearRecurrence[ {24,-240,1280,-3840,6144,-4096}, {1,24,336,3584,32256, 258048}, 30] (* Harvey P. Dale, Mar 24 2018 *)
-
Vec(1/(1-4*x)^6 + O(x^30)) \\ Michel Marcus, Aug 21 2015
-
[lucas_number2(n, 4, 0)*binomial(n,5)/2^10 for n in range(5, 35)] # Zerinvary Lajos, Mar 11 2009
A141054
8-idempotent numbers: a(n) = binomial(n+8,8)*8^n.
Original entry on oeis.org
1, 72, 2880, 84480, 2027520, 42172416, 787218432, 13495173120, 215922769920, 3262832967680, 46984794734592, 649244436332544, 8656592484433920, 111869810568069120, 1406363332855726080, 17251390216363573248, 207016682596362878976, 2435490383486622105600
Offset: 0
-
[8^n* Binomial(n+8, 8): n in [0..20]]; // Vincenzo Librandi, Oct 16 2011
-
seq(binomial(n+8,8)*8^n, n=0..17);
-
Table[Binomial[n + 8, 8] 8^n, {n, 0, 15}] (* Michael De Vlieger, Jul 24 2017 *)
-
vector(15,n,binomial(n+7,8)*8^(n-1)) \\ Derek Orr, Jul 24 2017
A050989
7-idempotent numbers.
Original entry on oeis.org
1, 56, 1764, 41160, 792330, 13311144, 201885684, 2826399576, 37096494435, 461645264080, 5493578642552, 62926446269232, 697434779483988, 7510836086750640, 78863778910881720, 809668130151718992, 8147285559651672357, 80514351413028291528, 782778416515552834300
Offset: 7
- Vincenzo Librandi, Table of n, a(n) for n = 7..400
- Eric Weisstein's World of Mathematics, Idempotent Number.
- Index entries for linear recurrences with constant coefficients, signature (56,-1372,19208,-168070,941192,-3294172,6588344,-5764801).
-
[7^(n-7)* Binomial(n, 7): n in [7..30]]; // Vincenzo Librandi, Oct 16 2011
-
seq(binomial(n, 7)*7^(n-7), n=7..33); # Zerinvary Lajos, Aug 01 2008
-
LinearRecurrence[{56,-1372,19208,-168070,941192,-3294172,6588344,-5764801}, {1,56,1764,41160,792330,13311144,201885684,2826399576},20] (* Harvey P. Dale, May 31 2014 *)
-
a(n)=binomial(n, 7)*7^(n-7) \\ Charles R Greathouse IV, Sep 03 2011
Showing 1-10 of 14 results.
Next
Comments