cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A053107 Expansion of 1/(1-8*x)^8.

Original entry on oeis.org

1, 64, 2304, 61440, 1351680, 25952256, 449839104, 7197425664, 107961384960, 1535450808320, 20882130993152, 273366078455808, 3462636993773568, 42617070692597760, 511404848311173120, 6000483553517764608, 69005560865454292992, 779356922715719073792
Offset: 0

Views

Author

Keywords

Comments

With a different offset, number of n-permutations (n>=7) of 9 objects: p, r, s, t, u, v, z, x, y with repetition allowed, containing exactly 7 u's. - Zerinvary Lajos, Feb 11 2010

Crossrefs

Programs

  • Magma
    [8^n* Binomial(n+7, 7): n in [0..20]]; // Vincenzo Librandi, Oct 16 2011
    
  • Mathematica
    Table[Binomial[n + 7, 7]*8^n, {n, 0, 20}] (* Zerinvary Lajos, Feb 11 2010 *)
    CoefficientList[Series[1/(1-8x)^8,{x,0,20}],x] (* or *) LinearRecurrence[ {64,-1792,28672,-286720,1835008,-7340032,16777216,-16777216},{1,64,2304,61440,1351680,25952256,449839104,7197425664},20] (* Harvey P. Dale, Jul 19 2018 *)
  • PARI
    vector(30, n, n--; 8^n*binomial(n+7,7)) \\ G. C. Greubel, Aug 16 2018
  • Sage
    [lucas_number2(n, 8, 0)*binomial(n,7)/8^7 for n in range(7, 22)] # Zerinvary Lajos, Mar 13 2009
    

Formula

a(n) = 8^n*binomial(n+7, 7).
G.f.: 1/(1-8*x)^8.

Extensions

More terms from Harvey P. Dale, Jul 19 2018

A173155 a(n) = binomial(n + 5, 5) * 8^n.

Original entry on oeis.org

1, 48, 1344, 28672, 516096, 8257536, 121110528, 1660944384, 21592276992, 268703891456, 3224446697472, 37520834297856, 425236122042368, 4710307813392384, 51140484831117312, 545498504865251328, 5727734301085138944, 59298896293587320832, 606166495445559279616
Offset: 0

Views

Author

Zerinvary Lajos, Feb 11 2010

Keywords

Comments

With a different offset, number of n-permutations (n>=5) of 9 objects: p, r, s, t, u, v, z, x, y with repetition allowed, containing exactly five (5) u's.

Crossrefs

Programs

  • Magma
    [8^n* Binomial(n+5, 5): n in [0..20]]; // Vincenzo Librandi, Oct 16 2011
  • Mathematica
    Table[Binomial[n + 5, 5]*8^n, {n, 0, 20}]

Formula

a(n) = C(n + 5, 5)*8^n, n>=0.
G.f.: 1/(1-8*x)^6. - Vincenzo Librandi, Oct 16 2011
From Amiram Eldar, Aug 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 96040*log(8/7) - 38470/3.
Sum_{n>=0} (-1)^n/a(n) = 262440*log(9/8) - 30910. (End)

A172510 a(n) = binomial(n + 4, 4) * 8^n.

Original entry on oeis.org

1, 40, 960, 17920, 286720, 4128768, 55050240, 692060160, 8304721920, 95965675520, 1074815565824, 11725260718080, 125069447659520, 1308418837053440, 13458022323978240, 136374626216312832, 1363746262163128320, 13477021884906209280, 131775325096860712960
Offset: 0

Views

Author

Zerinvary Lajos, Feb 05 2010

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(n + 4, 4)*8^n: n in [0..30]]; // Vincenzo Librandi, Jun 06 2011
    
  • Mathematica
    Table[Binomial[n + 4, 4]*8^n, {n, 0, 25}]
  • PARI
    Vec(1 / (1-8*x)^5 + O(x^30)) \\ Colin Barker, Jul 24 2017

Formula

G.f.: 1 / (1-8*x)^5. - R. J. Mathar, Feb 11 2010
a(n) = (8^(-1 + n)*(1 + n)*(2 + n)*(3 + n)*(4 + n)) / 3. - Colin Barker, Jul 24 2017
From Amiram Eldar, Aug 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 4400/3 - 10976*log(8/7).
Sum_{n>=0} (-1)^n/a(n) = 23328*log(9/8) - 8240/3. (End)

A196280 a(n) = binomial(n+9, 9)*8^n.

Original entry on oeis.org

1, 80, 3520, 112640, 2928640, 65601536, 1312030720, 23991418880, 407854120960, 6525665935360, 99190122217472, 1442765414072320, 20198715797012480, 273459536944168960, 3594039628409077760, 46003707243636195328, 575046340545452441600, 7035861107850241638400
Offset: 0

Views

Author

Vincenzo Librandi, Oct 13 2011

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(n+9, 9)*8^n: n in [0..20]];
  • Mathematica
    Table[Binomial[n+9,9]8^n,{n,0,20}] (* or *) LinearRecurrence[{80,-2880,61440,-860160,8257536,-55050240,251658240,-754974720,1342177280,-1073741824},{1,80,3520,112640,2928640,65601536,1312030720,23991418880,407854120960,6525665935360},20] (* Harvey P. Dale, May 13 2017 *)

Formula

a(n) = C(n+9,9)*8^n.
G.f.: 1 / (8*x-1)^10 . - R. J. Mathar, Oct 13 2011
From Amiram Eldar, Feb 17 2023: (Start)
Sum_{n>=0} 1/a(n) = 415065672*log(8/7) - 277121481/5.
Sum_{n>=0} (-1)^n/a(n) = 3099363912*log(9/8) - 12776837121/35. (End)

A197321 a(n) = binomial(n+10, 10)*8^n.

Original entry on oeis.org

1, 88, 4224, 146432, 4100096, 98402304, 2099249152, 40785412096, 734137417728, 12398765277184, 198380244434944, 3029807369551872, 44437174753427456, 628956934971588608, 8625695108181786624, 115009268109090488320, 1495120485418176348160, 18996824991195652423680
Offset: 0

Views

Author

Vincenzo Librandi, Oct 15 2011

Keywords

Crossrefs

Programs

  • Magma
    [8^n*Binomial(n+10, 10): n in [0..20]]
  • Mathematica
    Table[Binomial[n+10,10]8^n,{n,0,20}] (* Harvey P. Dale, Mar 05 2012 *)

Formula

a(n) = 8^n*C(n+10, 10).
G.f.: 1/(1-8*x)^11.
From Amiram Eldar, Feb 17 2023: (Start)
Sum_{n>=0} 1/a(n) = 3879700814/9 - 3228288560*log(8/7).
Sum_{n>=0} (-1)^n/a(n) = 30993639120*log(9/8) - 229983068738/63. (End)
Showing 1-5 of 5 results.