cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A053111 Expansion of (-1 + 1/(1-8*x)^8)/(64*x); related to A053107.

Original entry on oeis.org

1, 36, 960, 21120, 405504, 7028736, 112459776, 1686896640, 23991418880, 326283296768, 4271344975872, 54103703027712, 665891729571840, 7990700754862080, 93757555523715072, 1078211888522723328, 12177451917433110528, 135305021304812339200, 1481233917442156134400
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [8^(n-1)*Binomial(n+8, 7): n in [0..30]]; // G. C. Greubel, Aug 16 2018
  • Mathematica
    Table[8^(n - 1)*Binomial[n + 8, 7], {n, 0, 30}] (* G. C. Greubel, Aug 16 2018 *)
    CoefficientList[Series[(-1+1/(1-8x)^8)/(64x),{x,0,20}],x] (* Harvey P. Dale, Jun 20 2021 *)
  • PARI
    vector(30,n,n--; 8^(n-1)*binomial(n+8, 7)) \\ G. C. Greubel, Aug 16 2018
    

Formula

a(n) = 8^(n-1)*binomial(n+8, 7).
G.f.: (-1 + (1-8*x)^(-8))/(x*8^2).

A075513 Triangle read by rows. T(n, m) are the coefficients of Sidi polynomials.

Original entry on oeis.org

1, -1, 2, 1, -8, 9, -1, 24, -81, 64, 1, -64, 486, -1024, 625, -1, 160, -2430, 10240, -15625, 7776, 1, -384, 10935, -81920, 234375, -279936, 117649, -1, 896, -45927, 573440, -2734375, 5878656, -5764801, 2097152, 1, -2048, 183708, -3670016, 27343750, -94058496, 161414428, -134217728, 43046721
Offset: 1

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

Coefficients of the Sidi polynomials (-1)^(n-1)*D_{n-1,1,n-1}(x), for n >=1, where D_{k,n,m}(z) is given in Theorem 4.2., p. 862, of Sidi [1980].
The row polynomials p(n, x) := Sum_{m=0..n-1} a(n, m)x^m, n >= 1, are obtained from ((Eu(x)^n)*(x-1)^n)/(n*x), where Eu(x) := xd/dx is the Euler-derivative with respect to x.
The row polynomials p(n, y) := Sum_{m=0..n-1} a(n, m)*y^m, n >= 1, are also obtained from ((d^m/dx^m)((exp(x)-1)^m)/m)/exp(x) after replacement of exp(x) by y. Here (d^m/dx^m)f(x), m >= 1, denotes m-fold differentiation of f(x) with respect to x.
b(k,m,n) := (Sum_{p=0..m-1} (a(m, p)*((p+1)*k)^n))/(m-1)!, n >= 0, has g.f. 1/Product_{p=1..m} (1 - k*p*x) for k = 1, 2,... and m = 1, 2,...
The (signed) row sums give A000142(n-1), n >= 1, (factorials) and (unsigned) A074932(n).
The (unsigned) columns give A000012 (powers of 1), 2*A001787(n+1), (3^2)*A027472(n), (4^3)*A038846(n-1), (5^4)*A036071(n-5), (6^5)*A036084(n-6), (7^6)*A036226(n-7), (8^7)*A053107(n-8) for m=0..7.
Right edge of triangle is A000169. - Michel Marcus, May 17 2013

Examples

			The triangle T(n, m)  begins:
  n\m 0     1      2        3        4         5         6          7       8
  1:  1
  2: -1     2
  3:  1    -8      9
  4: -1    24    -81       64
  5:  1   -64    486    -1024      625
  6: -1   160  -2430    10240   -15625      7776
  7:  1  -384  10935   -81920   234375   -279936    117649
  8: -1   896 -45927   573440 -2734375   5878656  -5764801    2097152
  9:  1 -2048 183708 -3670016 27343750 -94058496 161414428 -134217728 4304672
  [Reformatted by _Wolfdieter Lang_, Oct 12 2022]
-----------------------------------------------------------------------------
p(2,x) = -1+2*x = (1/(2*x))*x*(d/dx)*x*(d/dx)*(x-1)^2.
		

References

  • A. Sidi, Practical Extrapolation Methods: Theory and Applications, Cambridge University Press, Cambridge, 2003.

Crossrefs

Programs

  • Maple
    # Assuming offset 0.
    seq(seq((-1)^(n-k)*binomial(n, k)*(k+1)^n, k=0..n), n=0..8);
    # Alternative:
    egf := x -> 1/(exp(LambertW(-exp(-x)*x*y) + x) - x*y):
    ser := x -> series(egf(x), x, 12):
    row := n -> seq(coeff(n!*coeff(ser(x), x, n), y, k), k=0..n):
    seq(print(row(n)), n = 0..8); # Peter Luschny, Oct 21 2022
  • Mathematica
    p[n_, x_] := p[n, x] = Nest[ x*D[#, x]& , (x-1)^n, n]/(n*x); a[n_, m_] := Coefficient[ p[n, x], x, m]; Table[a[n, m], {n, 1, 9}, {m, 0, n-1}] // Flatten (* Jean-François Alcover, Jul 03 2013 *)
  • PARI
    tabl(nn) = {for (n=1, nn, for (m=0, n-1, print1((-1)^(n-m-1)*binomial(n-1, m)*(m+1)^(n-1), ", ");); print(););} \\ Michel Marcus, May 17 2013

Formula

T(n, m) = ((-1)^(n-m-1)) binomial(n-1, m)*(m+1)^(n-1), n >= m+1 >= 1, else 0.
G.f. for m-th column: ((m+1)^m)(x/(1+(m+1)*x))^(m+1), m >= 0.
E.g.f.: -LambertW(-x*y*exp(-x))/((1+LambertW(-x*y*exp(-x)))*x*y). - Vladeta Jovovic, Feb 13 2008 [corrected for offset 0 <= m <= n. For offset n >= 1 take the integral over x. - Wolfdieter Lang, Oct 12 2022]
T(n, k) = S(n, k+1) / n where S(, ) is triangle in A258773. - Michael Somos, May 13 2018
E.g.f. of column k, with offset n >= 0: exp(-(k + 1)*x)*((k + 1)*x)^k/k!. - Wolfdieter Lang, Oct 20 2022
E.g.f: 1/(exp(LambertW(-exp(-x)*x*y) + x) - x*y) assuming offset = 0. - Peter Luschny, Oct 21 2022

A053108 Expansion of 1/(1 - 9*x)^9.

Original entry on oeis.org

1, 81, 3645, 120285, 3247695, 75996063, 1595917323, 30778405515, 554011299270, 9418192087590, 152574711818958, 2371843247367438, 35577648710511570, 517244277406668210, 7315311923322878970
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A053107.

Programs

  • Magma
    [Binomial(n+8, 8)*9^n: n in [0..20]]; // Vincenzo Librandi, Oct 13 2011
    
  • Mathematica
    CoefficientList[Series[1/(1-9x)^9,{x,0,30}],x] (* Harvey P. Dale, Jan 21 2012 *)
  • PARI
    vector(20, n, n--; 9^n*binomial(n+8,8)) \\ G. C. Greubel, Aug 15 2018
  • Sage
    [lucas_number2(n, 9, 0)*binomial(n,8)/9^8 for n in range(8, 23)] # Zerinvary Lajos, Mar 13 2009
    

Formula

a(n) = 9^n*binomial(n+8, 8).
G.f.: 1/(1 - 9*x)^9.
a(n) = 81*a(n-1) - 2916*a(n-2) + 61236*a(n-3) - 826686*a(n-4) + 7440174*a(n-5) - 44641044*a(n-6) + 172186884*a(n-7) - 387420489*a(n-8) + 387420489*a(n-9); a(0)=1, a(1)=81, a(2)=3645, a(3)=120285, a(4)=3247695, a(5)=75996063, a(6)=1595917323, a(7)=30778405515, a(8)=554011299270. - Harvey P. Dale, Jan 21 2012

A173155 a(n) = binomial(n + 5, 5) * 8^n.

Original entry on oeis.org

1, 48, 1344, 28672, 516096, 8257536, 121110528, 1660944384, 21592276992, 268703891456, 3224446697472, 37520834297856, 425236122042368, 4710307813392384, 51140484831117312, 545498504865251328, 5727734301085138944, 59298896293587320832, 606166495445559279616
Offset: 0

Views

Author

Zerinvary Lajos, Feb 11 2010

Keywords

Comments

With a different offset, number of n-permutations (n>=5) of 9 objects: p, r, s, t, u, v, z, x, y with repetition allowed, containing exactly five (5) u's.

Crossrefs

Programs

  • Magma
    [8^n* Binomial(n+5, 5): n in [0..20]]; // Vincenzo Librandi, Oct 16 2011
  • Mathematica
    Table[Binomial[n + 5, 5]*8^n, {n, 0, 20}]

Formula

a(n) = C(n + 5, 5)*8^n, n>=0.
G.f.: 1/(1-8*x)^6. - Vincenzo Librandi, Oct 16 2011
From Amiram Eldar, Aug 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 96040*log(8/7) - 38470/3.
Sum_{n>=0} (-1)^n/a(n) = 262440*log(9/8) - 30910. (End)

A053109 Expansion of 1/(1-10*x)^10.

Original entry on oeis.org

1, 100, 5500, 220000, 7150000, 200200000, 5005000000, 114400000000, 2431000000000, 48620000000000, 923780000000000, 16796000000000000, 293930000000000000, 4974200000000000000, 81719000000000000000
Offset: 0

Views

Author

Keywords

Comments

This is the tenth member of the k-family of sequences a(k,n) := k^n*binomial(n+k-1,k-1) starting with A000012 (powers of 1), A001787(n+1), A027472(n+3), A038846, A036071, A036084, A036226, A053107-9 for k=1..10.

Programs

  • GAP
    List([0..15],n->10^n*Binomial(n+9,9)); # Muniru A Asiru, Aug 16 2018
  • Magma
    [10^n*Binomial(n+9, 9): n in [0..30]]; // G. C. Greubel, Aug 16 2018
    
  • Maple
    seq(coeff(series(1/(1-10*x)^10, x, n+1), x, n), n = 0 .. 15); # Muniru A Asiru, Aug 16 2018
  • Mathematica
    CoefficientList[Series[1/(1-10x)^10,{x,0,20}],x] (* or *) Table[10^n Binomial[n+9,9],{n,0,20}] (* Harvey P. Dale, May 19 2011 *)
  • PARI
    vector(30,n,n--; 10^n*binomial(n+9, 9)) \\ G. C. Greubel, Aug 16 2018
    
  • Sage
    [lucas_number2(n, 10, 0)*binomial(n,9)/10 ^9 for n in range(9, 24)] # Zerinvary Lajos, Mar 13 2009
    

Formula

a(n) = 10^n*binomial(n+9, 9);
G.f.: 1/(1-10*x)^10.

A172510 a(n) = binomial(n + 4, 4) * 8^n.

Original entry on oeis.org

1, 40, 960, 17920, 286720, 4128768, 55050240, 692060160, 8304721920, 95965675520, 1074815565824, 11725260718080, 125069447659520, 1308418837053440, 13458022323978240, 136374626216312832, 1363746262163128320, 13477021884906209280, 131775325096860712960
Offset: 0

Views

Author

Zerinvary Lajos, Feb 05 2010

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(n + 4, 4)*8^n: n in [0..30]]; // Vincenzo Librandi, Jun 06 2011
    
  • Mathematica
    Table[Binomial[n + 4, 4]*8^n, {n, 0, 25}]
  • PARI
    Vec(1 / (1-8*x)^5 + O(x^30)) \\ Colin Barker, Jul 24 2017

Formula

G.f.: 1 / (1-8*x)^5. - R. J. Mathar, Feb 11 2010
a(n) = (8^(-1 + n)*(1 + n)*(2 + n)*(3 + n)*(4 + n)) / 3. - Colin Barker, Jul 24 2017
From Amiram Eldar, Aug 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 4400/3 - 10976*log(8/7).
Sum_{n>=0} (-1)^n/a(n) = 23328*log(9/8) - 8240/3. (End)

A293270 a(n) = n^n*binomial(2*n-1, n).

Original entry on oeis.org

1, 1, 12, 270, 8960, 393750, 21555072, 1413199788, 107961384960, 9418192087590, 923780000000000, 100633991211229476, 12055263261877075968, 1575041416811693275900, 222887966509090352332800, 33962507149515380859375000, 5543988061027763016035205120
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 04 2017

Keywords

Comments

The n-th term of the n-fold convolution of the powers of n.

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[n^n Binomial[2 n - 1, n], {n, 1, 16}]]
    Join[{1}, Table[(-1)^n n^n Binomial[-n, n], {n, 1, 16}]]
    Table[SeriesCoefficient[1/(1 - n x)^n, {x, 0, n}], {n, 0, 16}]
  • PARI
    a(n) = n^n*binomial(2*n-1, n); \\ Altug Alkan, Oct 04 2017

Formula

a(n) = [x^n] 1/(1 - n*x)^n.
a(n) ~ 2^(2*n-1)*n^n/sqrt(Pi*n).
Showing 1-7 of 7 results.