A053111 Expansion of (-1 + 1/(1-8*x)^8)/(64*x); related to A053107.
1, 36, 960, 21120, 405504, 7028736, 112459776, 1686896640, 23991418880, 326283296768, 4271344975872, 54103703027712, 665891729571840, 7990700754862080, 93757555523715072, 1078211888522723328, 12177451917433110528, 135305021304812339200, 1481233917442156134400
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (64,-1792,28672,-286720,1835008,-7340032,16777216,-16777216).
Programs
-
Magma
[8^(n-1)*Binomial(n+8, 7): n in [0..30]]; // G. C. Greubel, Aug 16 2018
-
Mathematica
Table[8^(n - 1)*Binomial[n + 8, 7], {n, 0, 30}] (* G. C. Greubel, Aug 16 2018 *) CoefficientList[Series[(-1+1/(1-8x)^8)/(64x),{x,0,20}],x] (* Harvey P. Dale, Jun 20 2021 *)
-
PARI
vector(30,n,n--; 8^(n-1)*binomial(n+8, 7)) \\ G. C. Greubel, Aug 16 2018
Formula
a(n) = 8^(n-1)*binomial(n+8, 7).
G.f.: (-1 + (1-8*x)^(-8))/(x*8^2).
Comments