Original entry on oeis.org
1, 25, 362, 3973, 36646, 299530, 2238676, 15613741, 103054094, 650194974, 3950996556, 23257207714, 133217073276, 745218012084, 4083224828328, 21966983072637, 116268166691358, 606474982072982, 3122157367765788
Offset: 1
-
R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-4*x))/(2*(1-4*x)^6) )); // G. C. Greubel, Jan 13 2020
-
seq(coeff(series((1-sqrt(1-4*x))/(2*(1-4*x)^6), x, n+1), x, n), n = 0..40); # G. C. Greubel, Jan 13 2020
-
CoefficientList[Series[(1-Sqrt[1-4*x])/(2*x*(1-4*x)^6), {n,0,40}], x] (* G. C. Greubel, Jan 13 2020 *)
-
my(x='x+O('x^40)); Vec((1-sqrt(1-4*x))/(2*(1-4*x)^6)) \\ G. C. Greubel, Jan 13 2020
-
def A045622_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-sqrt(1-4*x))/(2*(1-4*x)^6) ).list()
A045622_list(40) # G. C. Greubel, Jan 13 2020
A054335
A convolution triangle of numbers based on A000984 (central binomial coefficients of even order).
Original entry on oeis.org
1, 2, 1, 6, 4, 1, 20, 16, 6, 1, 70, 64, 30, 8, 1, 252, 256, 140, 48, 10, 1, 924, 1024, 630, 256, 70, 12, 1, 3432, 4096, 2772, 1280, 420, 96, 14, 1, 12870, 16384, 12012, 6144, 2310, 640, 126, 16, 1, 48620, 65536, 51480, 28672, 12012, 3840, 924, 160, 18, 1
Offset: 0
Triangle begins:
1;
2, 1;
6, 4, 1;
20, 16, 6, 1;
70, 64, 30, 8, 1;
252, 256, 140, 48, 10, 1;
924, 1024, 630, 256, 70, 12, 1; ...
Fourth row polynomial (n=3): p(3,x) = 20 + 16*x + 6*x^2 + x^3.
From _Paul Barry_, May 06 2009: (Start)
Production matrix begins
2, 1;
2, 2, 1;
0, 2, 2, 1;
-2, 0, 2, 2, 1;
0, -2, 0, 2, 2, 1;
4, 0, -2, 0, 2, 2, 1;
0, 4, 0, -2, 0, 2, 2, 1;
-10, 0, 4, 0, -2, 0, 2, 2, 1;
0, -10, 0, 4, 0, -2, 0, 2, 2, 1; (End)
-
T:= function(n, k)
if k mod 2=0 then return Binomial(2*n-k, n-Int(k/2))*Binomial(n-Int(k/2),Int(k/2))/Binomial(k,Int(k/2));
else return 4^(n-k)*Binomial(n-Int((k-1)/2)-1, Int((k-1)/2));
fi;
end;
Flat(List([0..10], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Jul 20 2019
-
T:= func< n, k | (k mod 2) eq 0 select Binomial(2*n-k, n-Floor(k/2))* Binomial(n-Floor(k/2),Floor(k/2))/Binomial(k,Floor(k/2)) else 4^(n-k)*Binomial(n-Floor((k-1)/2)-1, Floor((k-1)/2)) >;
[[T(n,k): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jul 20 2019
-
A054335 := proc(n,k)
if k <0 or k > n then
0 ;
elif type(k,odd) then
kprime := floor(k/2) ;
binomial(n-kprime-1,kprime)*4^(n-k) ;
else
kprime := k/2 ;
binomial(2*n-k,n-kprime)*binomial(n-kprime,kprime)/binomial(k,kprime) ;
end if;
end proc: # R. J. Mathar, Mar 12 2013
# Uses function PMatrix from A357368. Adds column 1,0,0,0,... to the left.
PMatrix(10, n -> binomial(2*(n-1), n-1)); # Peter Luschny, Oct 19 2022
-
Flatten[ CoefficientList[#1, x] & /@ CoefficientList[ Series[1/(Sqrt[1 - 4*z] - x*z), {z, 0, 9}], z]] (* or *)
a[n_, k_?OddQ] := 4^(n-k)*Binomial[(2*n-k-1)/2, (k-1)/2]; a[n_, k_?EvenQ] := (Binomial[n-k/2, k/2]*Binomial[2*n-k, n-k/2])/Binomial[k, k/2]; Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 08 2011, updated Jan 16 2014 *)
-
T(n, k) = if(k%2==0, binomial(2*n-k, n-k/2)*binomial(n-k/2,k/2)/binomial(k,k/2), 4^(n-k)*binomial(n-(k-1)/2-1, (k-1)/2));
for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 20 2019
-
def T(n, k):
if (mod(k,2)==0): return binomial(2*n-k, n-k/2)*binomial(n-k/2,k/2)/binomial(k,k/2)
else: return 4^(n-k)*binomial(n-(k-1)/2-1, (k-1)/2)
[[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jul 20 2019
A050982
5-idempotent numbers.
Original entry on oeis.org
1, 30, 525, 7000, 78750, 787500, 7218750, 61875000, 502734375, 3910156250, 29326171875, 213281250000, 1510742187500, 10458984375000, 70971679687500, 473144531250000, 3105010986328125, 20091247558593750, 128360748291015625, 810699462890625000
Offset: 5
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43.
Cf.
A001788,
A036216,
A040075,
A050988,
A050989,
A000389,
A054849,
A036219,
A045543,
A036084,
A140404,
A000389,
A054849,
A036219,
A045543,
A036084,
A140404.
-
[Binomial(n, 5)*5^(n-5): n in [5..25]]; // Vincenzo Librandi, Aug 12 2017
-
seq(binomial(n, 5)*5^(n-5), n=5..32); # Zerinvary Lajos, Jun 16 2008
-
CoefficientList[Series[1 / (1 - 5 x)^6, {x, 0, 33}], x] (* Vincenzo Librandi, Aug 12 2017 *)
-
a(n)=binomial(n, 5)*5^(n-5) \\ Charles R Greathouse IV, Sep 03 2011
A140404
a(n) = binomial(n+5, 5)*7^n.
Original entry on oeis.org
1, 42, 1029, 19208, 302526, 4235364, 54353838, 652246056, 7419298887, 80787921214, 848273172747, 8636963213424, 85649885199788, 830145041167176, 7886377891088172, 73606193650156272, 676256904160810749, 6126091955339109138, 54794489156088698401, 484498640959100070072
Offset: 0
-
[7^n* Binomial(n+5, 5): n in [0..20]]; // Vincenzo Librandi, Oct 12 2011
-
seq(binomial(n+5,5)*7^n,n=0..17);
-
Table[Binomial[n+5,5]7^n,{n,0,20}] (* or *) LinearRecurrence[ {42,-735,6860,-36015,100842,-117649},{1,42,1029,19208,302526,4235364},21] (* Harvey P. Dale, Sep 08 2011 *)
-
a(n)=binomial(n+5,5)*7^n \\ Charles R Greathouse IV, Oct 07 2015
A172978
a(n) = binomial(n+10, 10)*4^n.
Original entry on oeis.org
1, 44, 1056, 18304, 256256, 3075072, 32800768, 318636032, 2867724288, 24216338432, 193730707456, 1479398129664, 10848919617536, 76776969601024, 526470648692736, 3509804324618240, 22813728110018560, 144934272698941440, 901813252348968960, 5505807224867389440
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..157
- Index entries for linear recurrences with constant coefficients, signature (44,-880,10560,-84480,473088,-1892352,5406720,-10813440,14417920,-11534336,4194304).
-
[Binomial(n+10, 10)*4^n: n in [0..30]]; // Vincenzo Librandi, Jun 06 2011
-
Table[Binomial[n + 10, 10]*4^n, {n, 0, 20}]
Showing 1-5 of 5 results.
Comments