cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A050982 5-idempotent numbers.

Original entry on oeis.org

1, 30, 525, 7000, 78750, 787500, 7218750, 61875000, 502734375, 3910156250, 29326171875, 213281250000, 1510742187500, 10458984375000, 70971679687500, 473144531250000, 3105010986328125, 20091247558593750, 128360748291015625, 810699462890625000
Offset: 5

Views

Author

Keywords

Comments

Number of n-permutations of 6 objects: t,u,v,z,x, y with repetition allowed, containing exactly five u's. Example: a(6)=30 because we have uuuuut, uuuutu, uuutuu, uutuuu, utuuuu, tuuuuu, uuuuuv, uuuuvu, uuuvuu, uuvuuu, uvuuuu, vuuuuu, uuuuuz, uuuuzu, uuuzuu, uuzuuu, uzuuuu, zuuuuu, uuuuux, uuuuxu, uuuxuu, uuxuuu, uxuuuu, xuuuuu, uuuuuy, uuuuyu, uuuyuu, uuyuuu, uyuuuu, yuuuuu. - Zerinvary Lajos, Jun 16 2008

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43.

Crossrefs

Programs

Formula

a(n) = C(n, 5)*5^(n-5).
G.f.: x^5/(1-5*x)^6. - Zerinvary Lajos, Aug 06 2008
From Amiram Eldar, Apr 17 2022: (Start)
Sum_{n>=5} 1/a(n) = 6400*log(5/4) - 17125/12.
Sum_{n>=5} (-1)^(n+1)/a(n) = 32400*log(6/5) - 23625/4. (End)

A170932 a(n) = binomial(n + 8, 8)*7^n .

Original entry on oeis.org

1, 63, 2205, 56595, 1188495, 21630609, 353299947, 5299499205, 74192988870, 980996186170, 12360551945742, 149450309889426, 1743586948709970, 19715944727720430, 216875392004924730, 2327795874186192102, 24441856678955017071, 251607348165713411025
Offset: 0

Views

Author

Zerinvary Lajos, Feb 08 2010

Keywords

Comments

With a different offset, number of n-permutations of 8 objects: r, s, t, u, v, z, x, y with repetition allowed, containing exactly eight, (8) u's.

Crossrefs

Programs

  • Magma
    [Binomial(n + 8, 8)*7^n: n in [0..20]]; // Vincenzo Librandi, Oct 12 2011
  • Mathematica
    Table[Binomial[n + 8, 8]*7^n, {n, 0, 20}]

Formula

a(n) = C(n + 8, 8)*7^n.
From Amiram Eldar, Aug 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 12082656/5 - 15676416*log(7/6).
Sum_{n>=0} (-1)^n/a(n) = 117440512*log(8/7) - 235229912/15. (End)

A197192 a(n) = binomial(n+9, 9)*7^n.

Original entry on oeis.org

1, 70, 2695, 75460, 1716715, 33647614, 588833245, 9421331920, 140142312310, 1961992372340, 26094498552122, 332111799754280, 4068369546989930, 48194531556649940, 554237112901474310, 6207455664496512272, 67894046330430602975
Offset: 0

Views

Author

Vincenzo Librandi, Oct 13 2011

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(n+9, 9)*7^n: n in [0..20]];
  • Mathematica
    Table[Binomial[n+9,9]7^n,{n,0,20}] (* Harvey P. Dale, Jul 10 2025 *)

Formula

a(n) = C(n + 9, 9)*7^n.

A197193 a(n) = binomial(n+10, 10)*7^n.

Original entry on oeis.org

1, 77, 3234, 98098, 2403401, 50471421, 942133192, 16016264264, 252256162158, 3727785507446, 52188997104244, 697434779483988, 8950413003377846, 110847422580294862, 1330169070963538344, 15518639161241280680, 176524520459119567735, 1962537315692564605995, 21369850770874592376390, 228319984551975908021430
Offset: 0

Views

Author

Vincenzo Librandi, Oct 13 2011

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(n+10, 10)*7^n: n in [0..20]];
  • Mathematica
    Table[Binomial[n+10,10]7^n,{n,0,30}] (* or *) LinearRecurrence[{77,-2695,56595,-792330,7764834,-54353838,271769190,-951192165,2219448385,-3107227739,1977326743},{1,77,3234,98098,2403401,50471421,942133192,16016264264,252256162158,3727785507446,52188997104244},30] (* Harvey P. Dale, Jul 11 2025 *)

Formula

a(n) = C(n + 10, 10)*7^n.
G.f.: -1 / (7*x-1)^11 . - R. J. Mathar, Oct 13 2011
Showing 1-4 of 4 results.