cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A050982 5-idempotent numbers.

Original entry on oeis.org

1, 30, 525, 7000, 78750, 787500, 7218750, 61875000, 502734375, 3910156250, 29326171875, 213281250000, 1510742187500, 10458984375000, 70971679687500, 473144531250000, 3105010986328125, 20091247558593750, 128360748291015625, 810699462890625000
Offset: 5

Views

Author

Keywords

Comments

Number of n-permutations of 6 objects: t,u,v,z,x, y with repetition allowed, containing exactly five u's. Example: a(6)=30 because we have uuuuut, uuuutu, uuutuu, uutuuu, utuuuu, tuuuuu, uuuuuv, uuuuvu, uuuvuu, uuvuuu, uvuuuu, vuuuuu, uuuuuz, uuuuzu, uuuzuu, uuzuuu, uzuuuu, zuuuuu, uuuuux, uuuuxu, uuuxuu, uuxuuu, uxuuuu, xuuuuu, uuuuuy, uuuuyu, uuuyuu, uuyuuu, uyuuuu, yuuuuu. - Zerinvary Lajos, Jun 16 2008

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43.

Crossrefs

Programs

Formula

a(n) = C(n, 5)*5^(n-5).
G.f.: x^5/(1-5*x)^6. - Zerinvary Lajos, Aug 06 2008
From Amiram Eldar, Apr 17 2022: (Start)
Sum_{n>=5} 1/a(n) = 6400*log(5/4) - 17125/12.
Sum_{n>=5} (-1)^(n+1)/a(n) = 32400*log(6/5) - 23625/4. (End)

A050988 6-idempotent numbers.

Original entry on oeis.org

1, 42, 1008, 18144, 272160, 3592512, 43110144, 480370176, 5043886848, 50438868480, 484213137408, 4489976365056, 40409787285504, 354362750042112, 3037395000360960, 25514118003032064, 210491473525014528, 1708695490967764992, 13669563927742119936, 107917609955858841600
Offset: 6

Views

Author

Keywords

Comments

Number of n-permutations of 7 objects: s, t, u, v, z, x, y with repetition allowed, containing exactly six u's. - Zerinvary Lajos, Jun 16 2008

Crossrefs

Programs

Formula

a(n) = binomial(n,6)*6^(n-6).
G.f.: x^6/(1-6*x)^7. - Zerinvary Lajos, Aug 09 2008
From Amiram Eldar, Apr 17 2022: (Start)
Sum_{n>=6} 1/a(n) = 102561/5 - 112500*log(6/5).
Sum_{n>=6} (-1)^n/a(n) = 605052*log(7/6) - 466341/5. (End)

A141054 8-idempotent numbers: a(n) = binomial(n+8,8)*8^n.

Original entry on oeis.org

1, 72, 2880, 84480, 2027520, 42172416, 787218432, 13495173120, 215922769920, 3262832967680, 46984794734592, 649244436332544, 8656592484433920, 111869810568069120, 1406363332855726080, 17251390216363573248, 207016682596362878976, 2435490383486622105600
Offset: 0

Views

Author

Zerinvary Lajos, Aug 01 2008

Keywords

Comments

With a different offset, number of n-permutations of 9 objects:
p, r, s, t, u, v, z, x, y with repetition allowed, containing exactly eight (8) u's. Example: a(1)=72 because we have
uuuuuuuup, uuuuuuupu, uuuuuupuu, uuuuupuuu, uuuupuuuu, uuupuuuuu, uupuuuuuu, upuuuuuuu, puuuuuuuu,
uuuuuuuur, uuuuuuuru, uuuuuuruu, uuuuuruuu, uuuuruuuu, uuuruuuuu, uuruuuuuu, uruuuuuuu, ruuuuuuuu,
uuuuuuuus, uuuuuuusu, uuuuuusuu, uuuuusuuu, uuuusuuuu, uuusuuuuu, uusuuuuuu, usuuuuuuu, suuuuuuuu,
uuuuuuuut, uuuuuuutu, uuuuuutuu, uuuuutuuu, uuuutuuuu, uuutuuuuu, uutuuuuuu, utuuuuuuu, tuuuuuuuu,
uuuuuuuuv, uuuuuuuvu, uuuuuuvuu, uuuuuvuuu, uuuuvuuuu, uuuvuuuuu, uuvuuuuuu, uvuuuuuuu, vuuuuuuuu,
uuuuuuuuz, uuuuuuuzu, uuuuuuzuu, uuuuuzuuu, uuuuzuuuu, uuuzuuuuu, uuzuuuuuu, uzuuuuuuu, zuuuuuuuu,
uuuuuuuux, uuuuuuuxu, uuuuuuxuu, uuuuuxuuu, uuuuxuuuu, uuuxuuuuu, uuxuuuuuu, uxuuuuuuu, xuuuuuuuu,
uuuuuuuuy, uuuuuuuyu, uuuuuuyuu, uuuuuyuuu, uuuuyuuuu, uuuyuuuuu, uuyuuuuuu, uyuuuuuuu, yuuuuuuuu.

Crossrefs

Programs

  • Magma
    [8^n* Binomial(n+8, 8): n in [0..20]]; // Vincenzo Librandi, Oct 16 2011
    
  • Maple
    seq(binomial(n+8,8)*8^n, n=0..17);
  • Mathematica
    Table[Binomial[n + 8, 8] 8^n, {n, 0, 15}] (* Michael De Vlieger, Jul 24 2017 *)
  • PARI
    vector(15,n,binomial(n+7,8)*8^(n-1)) \\ Derek Orr, Jul 24 2017

Formula

a(n) = binomial(n+8,8)*8^n.
G.f.: 1/(1-8*x)^9. - Vincenzo Librandi, Oct 16 2011
From Amiram Eldar, Apr 17 2022: (Start)
Sum_{n>=0} 1/a(n) = 738990736/105 - 52706752*log(8/7).
Sum_{n>=0} (-1)^n/a(n) = 306110016*log(9/8) - 1261909808/35. (End)

A170932 a(n) = binomial(n + 8, 8)*7^n .

Original entry on oeis.org

1, 63, 2205, 56595, 1188495, 21630609, 353299947, 5299499205, 74192988870, 980996186170, 12360551945742, 149450309889426, 1743586948709970, 19715944727720430, 216875392004924730, 2327795874186192102, 24441856678955017071, 251607348165713411025
Offset: 0

Views

Author

Zerinvary Lajos, Feb 08 2010

Keywords

Comments

With a different offset, number of n-permutations of 8 objects: r, s, t, u, v, z, x, y with repetition allowed, containing exactly eight, (8) u's.

Crossrefs

Programs

  • Magma
    [Binomial(n + 8, 8)*7^n: n in [0..20]]; // Vincenzo Librandi, Oct 12 2011
  • Mathematica
    Table[Binomial[n + 8, 8]*7^n, {n, 0, 20}]

Formula

a(n) = C(n + 8, 8)*7^n.
From Amiram Eldar, Aug 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 12082656/5 - 15676416*log(7/6).
Sum_{n>=0} (-1)^n/a(n) = 117440512*log(8/7) - 235229912/15. (End)
Showing 1-4 of 4 results.