A202017
Triangle of coefficients of the numerator polynomials of the rational o.g.f.'s of the diagonals of A059297.
Original entry on oeis.org
1, 2, 3, 9, 4, 52, 64, 5, 195, 855, 625, 6, 606, 6546, 15306, 7776, 7, 1701, 38486, 201866, 305571, 117649, 8, 4488, 194160, 1950320, 6244680, 6806472, 2097152, 9, 11367, 887949, 15597315, 90665595, 200503701, 168205743, 43046721
Offset: 1
Triangle begins
..n\k.|...1.....2......3.......4.......5.......6
= = = = = = = = = = = = = = = = = = = = = = = =
..1..|...2
..2..|...3.....9
..3..|...4....52.....64
..4..|...5...195....855.....625
..5..|...6...606...6546...15306....7776
..6..|...7..1701..38486..201866..305571..117649
...
A002378
Oblong (or promic, pronic, or heteromecic) numbers: a(n) = n*(n+1).
Original entry on oeis.org
0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 462, 506, 552, 600, 650, 702, 756, 812, 870, 930, 992, 1056, 1122, 1190, 1260, 1332, 1406, 1482, 1560, 1640, 1722, 1806, 1892, 1980, 2070, 2162, 2256, 2352, 2450, 2550
Offset: 0
a(3) = 12, since 2(3)+2 = 8 has 4 partitions with exactly two parts: (7,1), (6,2), (5,3), (4,4). Taking the positive differences of the parts in each partition and adding, we get: 6 + 4 + 2 + 0 = 12. - _Wesley Ivan Hurt_, Jun 02 2013
G.f. = 2*x + 6*x^2 + 12*x^3 + 20*x^4 + 30*x^5 + 42*x^6 + 56*x^7 + ... - _Michael Somos_, May 22 2014
From _Miquel Cerda_, Dec 04 2016: (Start)
a(1) = 2, since 45-43 = 2;
a(2) = 6, since 47-45 = 2 and 47-43 = 4, then 2+4 = 6;
a(3) = 12, since 49-47 = 2, 49-45 = 4, and 49-43 = 6, then 2+4+6 = 12. (End)
- W. W. Berman and D. E. Smith, A Brief History of Mathematics, 1910, Open Court, page 67.
- J. H. Conway and R. K. Guy, The Book of Numbers, 1996, p. 34.
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag.
- L. E. Dickson, History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Chelsea, p. 357, 1952.
- L. E. Dickson, History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Chelsea, pp. 6, 232-233, 350 and 407, 1952.
- H. Eves, An Introduction to the History of Mathematics, revised, Holt, Rinehart and Winston, 1964, page 72.
- Nicomachus of Gerasa, Introduction to Arithmetic, translation by Martin Luther D'Ooge, Ann Arbor, University of Michigan Press, 1938, p. 254.
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 291.
- Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968), pp. 980-981.
- C. S. Ogilvy and J. T. Anderson, Excursions in Number Theory, Oxford University Press, 1966, pp. 61-62.
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 54-55.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- F. J. Swetz, From Five Fingers to Infinity, Open Court, 1994, p. 219.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 2-6.
- T. D. Noe, Table of n, a(n) for n = 0..1000
- D. Applegate, M. LeBrun and N. J. A. Sloane, Dismal Arithmetic, J. Int. Seq. 14 (2011) # 11.9.8.
- R. Bapat, S. J. Kirkland, and M. Neumann, On distance matrices and Laplacians, Linear Algebra Appl. 401 (2005), 193-209.
- Allan Bickle and Zhongyuan Che, Irregularities of Maximal k-degenerate Graphs, Discrete Applied Math. 331 (2023) 70-87.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- Allan Bickle, Zagreb Indices of Maximal k-degenerate Graphs, Australas. J. Combin. 89 1 (2024) 167-178.
- Alin Bostan, Frédéric Chyzak, and Vincent Pilaud, Refined product formulas for Tamari intervals, arXiv:2303.10986 [math.CO], 2023.
- H. Bottomley, Illustration of initial terms of A000217, A002378.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 410
- P. Cameron, T. Prellberg and D. Stark, Asymptotics for incidence matrix classes, Electron. J. Combin. 13 (2006), #R85, p. 11.
- S. Crowley, Two new zeta constants: fractal string and hypergeometric aspects of the Riemann zeta function, viXra:1202.0066, 2012.
- J. Estes and B. Wei, Sharp bounds of the Zagreb indices of k-trees, J Comb Optim 27 (2014), 271-291.
- Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See p. 23.
- I. Gutman and K. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004), 83-92.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets.
- L. B. W. Jolley, Summation of Series, Dover, 1961.
- Refik Keskin and Olcay Karaatli, Some New Properties of Balancing Numbers and Square Triangular Numbers, Journal of Integer Sequences, Vol. 15 (2012), Article #12.1.4.
- Craig Knecht, Largest pond by area in a square.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 27.
- Enrique Navarrete and Daniel Orellana, Finding Prime Numbers as Fixed Points of Sequences, arXiv:1907.10023 [math.NT], 2019.
- László Németh, The trinomial transform triangle, J. Int. Seqs., Vol. 21 (2018), Article #18.7.3. Also arXiv:1807.07109 [math.NT], 2018.
- Lee Melvin Peralta, Solutions to the Equation [x]x = n, The Mathematics Teacher, Vol. 111, No. 2 (October 2017), pp. 150-154.
- Aleksandar Petojević, A Note about the Pochhammer Symbol, Mathematica Moravica, Vol. 12-1 (2008), 37-42.
- A. Petojevic and N. Dapic, The vAm(a,b,c;z) function, Preprint 2013.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- John D. Roth, David A. Garren, and R. Clark Robertson, Integer Carrier Frequency Offset Estimation in OFDM with Zadoff-Chu Sequences, IEEE Int'l Conference on Acoustics, Speech and Signal Processing (ICASSP 2021) 4850-4854.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
- Michelle Rudolph-Lilith, On the Product Representation of Number Sequences, with Application to the Fibonacci Family, arXiv preprint arXiv:1508.07894 [math.NT], 2015.
- Amelia Carolina Sparavigna, Groupoids of OEIS A002378 and A016754 Numbers (oblong and odd square numbers), Politecnico di Torino (Italy, 2019).
- Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT].
- J. Striker and N. Williams, Promotion and Rowmotion , arXiv preprint arXiv:1108.1172 [math.CO], 2011-2012.
- D. Suprijanto and Rusliansyah, Observation on Sums of Powers of Integers Divisible by Four, Applied Mathematical Sciences, Vol. 8, 2014, no. 45, 2219 - 2226.
- Leo Tavares, Square illustration
- R. Tijdeman, Some applications of Diophantine approximation, pp. 261-284 of Surveys in Number Theory (Urbana, May 21, 2000), ed. M. A. Bennett et al., Peters, 2003.
- G. Villemin's Almanach of Numbers, Nombres Proniques.
- Eric Weisstein's World of Mathematics, Crown Graph.
- Eric Weisstein's World of Mathematics, Graph Cycle.
- Eric Weisstein's World of Mathematics, Pronic Number.
- Eric Weisstein's World of Mathematics, Leibniz Harmonic Triangle.
- Eric Weisstein's World of Mathematics, Wheel Graph.
- Eric Weisstein's World of Mathematics, Wiener Index.
- Wikipedia, Pronic number.
- Wolfram Research, Hypergeometric Function 3F2, The Wolfram Functions site.
- Index entries for "core" sequences
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Partial sums of
A005843 (even numbers). Twice triangular numbers (
A000217).
Cf.
A035106,
A087811,
A119462,
A127235,
A049598,
A124080,
A033996,
A028896,
A046092,
A000217,
A005563,
A046092,
A001082,
A059300,
A059297,
A059298,
A166373,
A002943 (bisection),
A002939 (bisection),
A078358 (complement).
Cf.
A045943 (4-cycles in triangular honeycomb acute knight graph),
A028896 (5-cycles),
A152773 (6-cycles).
-
a002378 n = n * (n + 1)
a002378_list = zipWith (*) [0..] [1..]
-- Reinhard Zumkeller, Aug 27 2012, Oct 12 2011
-
[n*(n+1) : n in [0..100]]; // Wesley Ivan Hurt, Oct 26 2015
-
A002378 := proc(n)
n*(n+1) ;
end proc:
seq(A002378(n),n=0..100) ;
-
Table[n(n + 1), {n, 0, 50}] (* Robert G. Wilson v, Jun 19 2004 *)
oblongQ[n_] := IntegerQ @ Sqrt[4 n + 1]; Select[Range[0, 2600], oblongQ] (* Robert G. Wilson v, Sep 29 2011 *)
2 Accumulate[Range[0, 50]] (* Harvey P. Dale, Nov 11 2011 *)
LinearRecurrence[{3, -3, 1}, {2, 6, 12}, {0, 20}] (* Eric W. Weisstein, Jul 27 2017 *)
-
{a(n) = n*(n+1)};
-
concat(0, Vec(2*x/(1-x)^3 + O(x^100))) \\ Altug Alkan, Oct 26 2015
-
is(n)=my(m=sqrtint(n)); m*(m+1)==n \\ Charles R Greathouse IV, Nov 01 2018
-
is(n)=issquare(4*n+1) \\ Charles R Greathouse IV, Mar 16 2022
-
def a(n): return n*(n+1)
print([a(n) for n in range(51)]) # Michael S. Branicky, Jan 13 2022
-
(2 to 100 by 2).scanLeft(0)( + ) // Alonso del Arte, Sep 12 2019
A048993
Triangle of Stirling numbers of 2nd kind, S(n,k), n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 7, 6, 1, 0, 1, 15, 25, 10, 1, 0, 1, 31, 90, 65, 15, 1, 0, 1, 63, 301, 350, 140, 21, 1, 0, 1, 127, 966, 1701, 1050, 266, 28, 1, 0, 1, 255, 3025, 7770, 6951, 2646, 462, 36, 1, 0, 1, 511, 9330, 34105, 42525, 22827, 5880, 750, 45, 1
Offset: 0
The triangle S(n,k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 11 12
0: 1
1: 0 1
2: 0 1 1
3: 0 1 3 1
4: 0 1 7 6 1
5: 0 1 15 25 10 1
6: 0 1 31 90 65 15 1
7: 0 1 63 301 350 140 21 1
8: 0 1 127 966 1701 1050 266 28 1
9: 0 1 255 3025 7770 6951 2646 462 36 1
10: 0 1 511 9330 34105 42525 22827 5880 750 45 1
11: 0 1 1023 28501 145750 246730 179487 63987 11880 1155 55 1
12: 0 1 2047 86526 611501 1379400 1323652 627396 159027 22275 1705 66 1
... reformatted and extended - _Wolfdieter Lang_, Oct 16 2014
Completely symmetric function S(4, 2) = h^{(2)}_2 = 1^2 + 2^2 + 1^1*2^1 = 7; S(5, 2) = h^{(2)}_3 = 1^3 + 2^3 + 1^2*2^1 + 1^1*2^2 = 15. - _Wolfdieter Lang_, May 26 2017
From _Wolfdieter Lang_, Aug 11 2017: (Start)
Recurrence: S(5, 3) = S(4, 2) + 2*S(4, 3) = 7 + 3*6 = 25.
Boas-Buck recurrence for column m = 3, and n = 5: S(5, 3) = (3/2)*((5/2)*S(4, 3) + 10*Bernoulli(2)*S(3, 3)) = (3/2)*(15 + 10*(1/6)*1) = 25. (End)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 310.
- J. H. Conway and R. K. Guy, The Book of Numbers, Springer, p. 92.
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 244.
- J. Riordan, An Introduction to Combinatorial Analysis, p. 48.
- David W. Wilson, Table of n, a(n) for n = 0..10010
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- V. E. Adler, Set partitions and integrable hierarchies, arXiv:1510.02900 [nlin.SI], 2015.
- Peter Bala, The white diamond product of power series
- Paul Barry, Generalized Stirling Numbers, Exponential Riordan Arrays, and Toda Chain Equations, Journal of Integer Sequences, 17 (2014), #14.2.3.
- Paul Barry, Constructing Exponential Riordan Arrays from Their A and Z Sequences, Journal of Integer Sequences, 17 (2014), #14.2.6.
- Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
- Xi Chen, Bishal Deb, Alexander Dyachenko, Tomack Gilmore, and Alan D. Sokal, Coefficientwise total positivity of some matrices defined by linear recurrences, arXiv:2012.03629 [math.CO], 2020.
- R. M. Dickau, Stirling numbers of the second kind
- Gerard Duchamp, Karol A. Penson, Allan I. Solomon, Andrej Horzela, and Pawel Blasiak, One-parameter groups and combinatorial physics, arXiv:quant-ph/0401126, 2004.
- FindStat - Combinatorial Statistic Finder, The number of blocks in the set partition.
- Bill Gosper, Colored illustrations of triangle of Stirling numbers of second kind read mod 2, 3, 4, 5, 6, 7
- W. Steven Gray and Makhin Thitsa, System Interconnections and Combinatorial Integer Sequences, in: System Theory (SSST), 2013 45th Southeastern Symposium on, Date of Conference: 11-11 March 2013, Digital Object Identifier: 10.1109/SSST.2013.6524939.
- Aoife Hennessy and Paul Barry, Generalized Stirling Numbers, Exponential Riordan Arrays, and Orthogonal Polynomials, J. Int. Seq. 14 (2011) # 11.8.2.
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See pp. 8-9.
- Mathias Pétréolle and Alan D. Sokal, Lattice paths and branched continued fractions. II. Multivariate Lah polynomials and Lah symmetric functions, arXiv:1907.02645 [math.CO], 2019.
- Claus Michael Ringel, The Catalan combinatorics of the hereditary artin algebras, arXiv preprint arXiv:1502.06553 [math.RT], 2015.
- X.-T. Su, D.-Y. Yang, and W.-W. Zhang, A note on the generalized factorial, Australasian Journal of Combinatorics, Volume 56 (2013), Pages 133-137.
See especially
A008277 which is the main entry for this triangle.
-
a048993 n k = a048993_tabl !! n !! k
a048993_row n = a048993_tabl !! n
a048993_tabl = iterate (\row ->
[0] ++ (zipWith (+) row $ zipWith (*) [1..] $ tail row) ++ [1]) [1]
-- Reinhard Zumkeller, Mar 26 2012
-
for n from 0 to 10 do seq(Stirling2(n,k),k=0..n) od; # yields sequence in triangular form # Emeric Deutsch, Nov 01 2006
-
t[n_, k_] := StirlingS2[n, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Robert G. Wilson v *)
-
create_list(stirling2(n,k),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
-
for(n=0, 22, for(k=0, n, print1(stirling(n, k, 2), ", ")); print()); \\ Joerg Arndt, Apr 21 2013
A088956
Triangle, read by rows, of coefficients of the hyperbinomial transform.
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 16, 9, 3, 1, 125, 64, 18, 4, 1, 1296, 625, 160, 30, 5, 1, 16807, 7776, 1875, 320, 45, 6, 1, 262144, 117649, 27216, 4375, 560, 63, 7, 1, 4782969, 2097152, 470596, 72576, 8750, 896, 84, 8, 1, 100000000, 43046721, 9437184, 1411788, 163296, 15750
Offset: 0
Rows begin:
{1},
{1, 1},
{3, 2, 1},
{16, 9, 3, 1},
{125, 64, 18, 4, 1},
{1296, 625, 160, 30, 5, 1},
{16807, 7776, 1875, 320, 45, 6, 1},
{262144, 117649, 27216, 4375, 560, 63, 7, 1}, ...
-
a088956 n k = a095890 (n + 1) (k + 1) * a007318' n k `div` (n - k + 1)
a088956_row n = map (a088956 n) [0..n]
a088956_tabl = map a088956_row [0..]
-- Reinhard Zumkeller, Jul 07 2013
-
nn=8; t=Sum[n^(n-1)x^n/n!, {n,1,nn}]; Range[0,nn]! CoefficientList[Series[Exp[t+y x] ,{x,0,nn}], {x,y}] //Grid (* Geoffrey Critzer, Nov 10 2012 *)
A061356
Triangle read by rows: T(n, k) is the number of labeled trees on n nodes with maximal node degree k (0 < k < n).
Original entry on oeis.org
1, 2, 1, 9, 6, 1, 64, 48, 12, 1, 625, 500, 150, 20, 1, 7776, 6480, 2160, 360, 30, 1, 117649, 100842, 36015, 6860, 735, 42, 1, 2097152, 1835008, 688128, 143360, 17920, 1344, 56, 1, 43046721, 38263752, 14880348, 3306744, 459270, 40824, 2268, 72, 1
Offset: 2
Triangle begins
1;
2, 1;
9, 6, 1;
64, 48, 12, 1;
625, 500, 150, 20, 1;
7776, 6480, 2160, 360, 30, 1;
...
From _Peter Bala_, Sep 21 2012: (Start)
O.g.f.'s for the diagonals begin:
1/(1-x) = 1 + x + x^2 + x^3 + ...
2*x/(1-x)^3 = 2 + 6*x + 12*x^3 + ... A002378(n+1)
(9+3*x)/(1-x)^5 = 9 + 48*x + 150*x^2 + ... 3*A004320(n+1)
The numerator polynomials are the row polynomials of A155163.
(End)
- L. Comtet, Analyse Combinatoire, P.U.F., Paris 1970. Volume 1, p 81.
- L. Comtet, Advanced Combinatorics, Reidel, 1974.
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- A. Avron and N. Dershowitz, Cayley's Formula, A Page From The Book, Amer. Math. Monthly, Vol. 123, No. 7, Aug.-Sep. 2016, 699-700 (2).
- Peter Bala, Diagonals of triangles with generating function exp(t*F(x))
- W. Bomfim, Bijection between rooted forests and multigraphs without cycles except one loop in each connected component. [From _Washington Bomfim_, Sep 04 2010]
- J. W. Moon, Another proof of Cayley's formula for counting trees, Amer. Math. Monthly, Vol. 70, No. 8, Oct. 1963, 846-847.
- Jim Pitman, Coalescent Random Forests, Technical Report No. 457, Department of Statistics, University of California.
- Jim Pitman, Coalescent Random Forests, Journal of Combinatorial Theory, Series A, Volume 85, Issue 2, February 1999, Pages 165-193.
- Paul R. F. Schumacher, Descents in parking functions, J. Integer Seq., Vol. 21 (2018), Article 18.2.3.
- Eric Weisstein's World of Mathematics, Abel Polynomial.
- Wikipedia, Lambert W function
- J. Zeng, A Ramanujan sequence that refines the Cayley formula for trees, Ramanujan J., 3(1999) 1, 45-54.
-
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0,...) as column 0 to the triangle.
BellMatrix(n -> (n+1)^n, 12); # Peter Luschny, Jan 21 2016
-
nn = 7; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; f[list_] := Select[list, # > 0 &]; Map[f, Drop[Range[0, nn]! CoefficientList[Series[Exp[y t], {x, 0, nn}], {x, y}], 1]] // Flatten (* Geoffrey Critzer, Feb 10 2012 *)
T[n_, m_] := T[n, m] = Binomial[n, m]*Sum[m^k*T[n-m, k], {k, 1, n-m}]; T[n_, n_] = 1; Table[T[n, m], {n, 1, 9}, {m, 1, n}] // Flatten (* Jean-François Alcover, Mar 31 2015, after Vladimir Kruchinin *)
Table[Binomial[n - 2, k - 1]*(n - 1)^(n - k - 1), {n, 2, 12}, {k, 1, n - 1}] // Flatten (* G. C. Greubel, Nov 12 2017 *)
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
rows = 10;
M = BellMatrix[(# + 1)^#&, rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
-
create_list(binomial(n,k)*(n+1)^(n-k),n,0,20,k,0,n); /* Emanuele Munarini, Apr 01 2014 */
-
for(n=2,11, for(k=1,n-1, print1(binomial(n-2, k-1)*(n-1)^(n-k-1), ", "))) \\ G. C. Greubel, Nov 12 2017
-
# uses[bell_matrix from A264428]
# Adds (1,0,0,0,...) as column 0 to the triangle.
bell_matrix(lambda n: (n+1)^n, 12) # Peter Luschny, Jan 21 2016
A137452
Triangular array of the coefficients of the sequence of Abel polynomials A(n,x) := x*(x-n)^(n-1).
Original entry on oeis.org
1, 0, 1, 0, -2, 1, 0, 9, -6, 1, 0, -64, 48, -12, 1, 0, 625, -500, 150, -20, 1, 0, -7776, 6480, -2160, 360, -30, 1, 0, 117649, -100842, 36015, -6860, 735, -42, 1, 0, -2097152, 1835008, -688128, 143360, -17920, 1344, -56, 1, 0, 43046721, -38263752, 14880348, -3306744, 459270, -40824, 2268, -72, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, -2, 1;
0, 9, -6, 1;
0, -64, 48, -12, 1;
0, 625, -500, 150, -20, 1;
0, -7776, 6480, -2160, 360, -30, 1;
0, 117649, -100842, 36015, -6860, 735, -42, 1;
0, -2097152, 1835008, -688128, 143360, -17920, 1344, -56, 1;
- Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 14 and 29
- Seiichi Manyama, Rows n = 0..139, flattened
- W. Y. Chen, A general bijective algorithm for trees, PNAS December 1, 1990 vol. 87 no. 24 9635-9639.
- L. E. Clarke, On Cayley's formula for counting trees, J. London Math. Soc. 33 (1958), 471-475.
- Péter L. Erdős and L. A. Székely, Applications of Antilexicographic Order. I., An Enumerative Theory of Trees, Adv. in Appl. Math. 10, (1989) 488-496.
- Eric Weisstein's World of Mathematics, Abel Polynomial.
- Wikipedia, Abel Polynomials.
- Bao-Xuan Zhu, Total positivity from a generalized cycle index polynomial, arXiv:2006.14485 [math.CO], 2020.
-
T := proc(n,k) if n = 0 and k = 0 then 1 else binomial(n-1,k-1)*(-n)^(n-k) fi end; seq(print(seq(T(n,k),k=0..n)),n=0..7); # Peter Luschny, Jan 14 2009
# The function BellMatrix is defined in A264428.
BellMatrix(n -> (-n-1)^n, 9); # Peter Luschny, Jan 27 2016
-
a0 = 1 a[x, 0] = 1; a[x, 1] = x; a[x_, n_] := x*(x - a0*n)^(n - 1); Table[Expand[a[x, n]], {n, 0, 10}]; a1 = Table[CoefficientList[a[x, n], x], {n, 0, 10}]; Flatten[a1]
(* Second program: *)
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
B = BellMatrix[Function[n, (-n-1)^n], rows = 12];
Table[B[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
-
# uses[inverse_bell_transform from A264429]
def A137452_matrix(dim):
nat = [n for n in (1..dim)]
return inverse_bell_transform(dim, nat)
A137452_matrix(10) # Peter Luschny, Dec 20 2015
A256894
Triangle read by rows, T(n,k) = Sum_{j=0..n-k+1} C(n-1,j-1)*T(n-j,k-1) if k != 0 else 1, n>=0, 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 13, 7, 1, 1, 16, 40, 35, 11, 1, 1, 32, 121, 155, 80, 16, 1, 1, 64, 364, 651, 490, 161, 22, 1, 1, 128, 1093, 2667, 2751, 1316, 294, 29, 1, 1, 256, 3280, 10795, 14721, 9597, 3108, 498, 37, 1, 1, 512, 9841, 43435, 76630, 65352
Offset: 0
Triangle starts:
1;
1, 1;
1, 2, 1;
1, 4, 4, 1;
1, 8, 13, 7, 1;
1, 16, 40, 35, 11, 1;
1, 32, 121, 155, 80, 16, 1;
1, 64, 364, 651, 490, 161, 22, 1;
The signed version is the inverse of A326326:
1;
-1, 1;
1, -2, 1;
-1, 4, -4, 1;
1, -8, 13, -7, 1;
-1, 16, -40, 35, -11, 1;
1, -32, 121, -155, 80, -16, 1;
-1, 64, -364, 651, -490, 161, -22, 1. - _Peter Luschny_, Jul 02 2019
T(4,3)=7 is the number of disjoint [4]-covering collections of 4 subsets:
{{1},{2},{3},{4}}
{{1,2},{3},{4},{}}
{{1,3},{2},{4},{}}
{{1,4},{2},{3},{}}
{{2,3},{1},{4},{}}
{{2,4},{1},{3},{}}
{{3,4},{1},{2},{}}. - _Manfred Boergens_, Mar 04 2025
-
# Implemented as a sequence transformation acting on f: n -> 1,1,1,1,... .
F := proc(n, k, f) option remember; `if`(k=0, f(0)^n,
add(binomial(n-1,j-1)*f(j)*F(n-j,k-1,f),j=0..n-k+1)) end:
for n from 0 to 7 do seq(F(n,k,j->1), k=0..n) od;
-
Table[StirlingS2[n, m+1]+StirlingS2[n, m], {n, 0, 10}, {m, 0, n}]//Flatten (* Manfred Boergens, Mar 04 2025 *)
A059300
Triangle of idempotent numbers binomial(n,k)*k^(n-k), version 4.
Original entry on oeis.org
1, 1, 2, 1, 6, 3, 1, 12, 24, 4, 1, 20, 90, 80, 5, 1, 30, 240, 540, 240, 6, 1, 42, 525, 2240, 2835, 672, 7, 1, 56, 1008, 7000, 17920, 13608, 1792, 8, 1, 72, 1764, 18144, 78750, 129024, 61236, 4608, 9, 1, 90, 2880, 41160, 272160, 787500, 860160, 262440, 11520, 10
Offset: 0
Triangle begins:
1;
1, 2;
1, 6, 3;
1, 12, 24, 4;
1, 20, 90, 80, 5;
1, 30, 240, 540, 240, 6;
1, 42, 525, 2240, 2835, 672, 7;
...
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43 and p. 135, [3i'].
-
/* As triangle: */ [[Binomial(n+1,n-k+1)*(n-k+1)^k: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 22 2015
-
t[n_, k_] := Binomial[n + 1, k]*(n - k + 1)^k; Flatten@Table[t[n, k], {n, 0, 9}, {k, 0, n}] (* Arkadiusz Wesolowski, Mar 23 2013 *)
-
for(n=0, 25, for(k=0, n, print1(binomial(n+1,k)*(n-k+1)^k, ", "))) \\ G. C. Greubel, Jan 05 2017
A141054
8-idempotent numbers: a(n) = binomial(n+8,8)*8^n.
Original entry on oeis.org
1, 72, 2880, 84480, 2027520, 42172416, 787218432, 13495173120, 215922769920, 3262832967680, 46984794734592, 649244436332544, 8656592484433920, 111869810568069120, 1406363332855726080, 17251390216363573248, 207016682596362878976, 2435490383486622105600
Offset: 0
-
[8^n* Binomial(n+8, 8): n in [0..20]]; // Vincenzo Librandi, Oct 16 2011
-
seq(binomial(n+8,8)*8^n, n=0..17);
-
Table[Binomial[n + 8, 8] 8^n, {n, 0, 15}] (* Michael De Vlieger, Jul 24 2017 *)
-
vector(15,n,binomial(n+7,8)*8^(n-1)) \\ Derek Orr, Jul 24 2017
A050989
7-idempotent numbers.
Original entry on oeis.org
1, 56, 1764, 41160, 792330, 13311144, 201885684, 2826399576, 37096494435, 461645264080, 5493578642552, 62926446269232, 697434779483988, 7510836086750640, 78863778910881720, 809668130151718992, 8147285559651672357, 80514351413028291528, 782778416515552834300
Offset: 7
- Vincenzo Librandi, Table of n, a(n) for n = 7..400
- Eric Weisstein's World of Mathematics, Idempotent Number.
- Index entries for linear recurrences with constant coefficients, signature (56,-1372,19208,-168070,941192,-3294172,6588344,-5764801).
-
[7^(n-7)* Binomial(n, 7): n in [7..30]]; // Vincenzo Librandi, Oct 16 2011
-
seq(binomial(n, 7)*7^(n-7), n=7..33); # Zerinvary Lajos, Aug 01 2008
-
LinearRecurrence[{56,-1372,19208,-168070,941192,-3294172,6588344,-5764801}, {1,56,1764,41160,792330,13311144,201885684,2826399576},20] (* Harvey P. Dale, May 31 2014 *)
-
a(n)=binomial(n, 7)*7^(n-7) \\ Charles R Greathouse IV, Sep 03 2011
Showing 1-10 of 20 results.
Comments