A139526
Triangle A061356 read right to left.
Original entry on oeis.org
1, 1, 2, 1, 6, 9, 1, 12, 48, 64, 1, 20, 150, 500, 625, 1, 30, 360, 2160, 6480, 7776, 1, 42, 735, 6860, 36015, 100842, 117649, 1, 56, 1344, 17920, 143360, 688128, 1835008, 2097152, 1, 72, 2268, 40824, 459270, 3306744, 14880348, 38263752, 43046721, 1, 90, 3600, 84000, 1260000, 12600000, 84000000, 360000000, 900000000, 1000000000
Offset: 2
(1) times (1) = (1)
(1 1) * (1 2) = (1 2)
(1 2 1 ) * (1 3 9) = (1 6 9)
(1 3 3 1) * (1 4 16 64) = (1 12 48 64)
etc.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA. Second ed. 1994.
- Peter D. Schumer (2004), Mathematical Journeys, page 168, Proposition 16.1 (c)
-
A061356 := proc(n,k) binomial(n-2,k-1)*(n-1)^(n-k-1); end: A139526 := proc(n,k) A061356(n,n-k-1) ; end: for n from 2 to 14 do for k from 0 to n-2 do printf("%d,",A139526(n,k)) ; od: od: # R. J. Mathar, May 22 2008
-
T[n_, k_] := (n - 1)^k*Binomial[n - 2, n - k - 2];
Table[T[n, k], {n, 2, 11}, {k, 0, n - 2}] // Flatten (* Jean-François Alcover, Jun 13 2023 *)
-
for(n=2,12,forstep(k=n-1,1,-1,print1(binomial(n-2, k-1)*(n-1)^(n-k-1)","))) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 10 2008
More terms from
R. J. Mathar and Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2008
A028421
Triangle read by rows: T(n, k) = (k+1)*A132393(n+1, k+1), for 0 <= k <= n.
Original entry on oeis.org
1, 1, 2, 2, 6, 3, 6, 22, 18, 4, 24, 100, 105, 40, 5, 120, 548, 675, 340, 75, 6, 720, 3528, 4872, 2940, 875, 126, 7, 5040, 26136, 39396, 27076, 9800, 1932, 196, 8, 40320, 219168, 354372, 269136, 112245, 27216, 3822, 288, 9
Offset: 0
Peter Wiggen (wiggen(AT)math.psu.edu)
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10
------------------------------------------------------------------------------------
0: 1
1: 1 2
2: 2 6 3
3: 6 22 18 4
4: 24 100 105 40 5
5: 120 548 675 340 75 6
6: 720 3528 4872 2940 875 126 7
7: 5040 26136 39396 27076 9800 1932 196 8
8: 40320 219168 354372 269136 112245 27216 3822 288 9
9: 362880 2053152 3518100 2894720 1346625 379638 66150 6960 405 10
10: 3628800 21257280 38260728 33638000 17084650 5412330 1104411 145200 11880 550 11
... - _Wolfdieter Lang_, Nov 23 2018
Row sums give
A000254(n+1), n >= 0.
The asymptotic expansion of E(x,m=2,n) leads to
A000254 (n=1),
A001705 (n=2),
A001711 (n=3),
A001716 (n=4),
A001721 (n=5),
A051524 (n=6),
A051545 (n=7),
A051560 (n=8),
A051562 (n=9),
A051564 (n=10),
A093905 (triangle) and
A165674 (triangle).
-
A028421 := proc(n,k) (-1)^(n+k)*(k+1)*Stirling1(n+1,k+1) end:
seq(seq(A028421(n,k), k=0..n), n=0..8);
# Johannes W. Meijer, Oct 07 2009, Revised Sep 09 2012
egf := (1 - t)^(-x - 1)*(1 - x*log(1 - t)):
ser := series(egf, t, 16): coefft := n -> expand(coeff(ser,t,n)):
seq(seq(n!*coeff(coefft(n), x, k), k = 0..n), n = 0..8); # Peter Luschny, Jun 12 2022
-
f[n_, k_] = (k + 1) StirlingS1[n + 1, k + 1] // Abs; Flatten[Table[f[n, k], {n, 0, 9}, {k, 0, n}]][[1 ;; 47]] (* Jean-François Alcover, Jun 01 2011, after formula *)
-
# uses[riordan_square from A321620]
riordan_square(-ln(1 - x), 10, True) # Peter Luschny, Jan 03 2019
A059297
Triangle of idempotent numbers binomial(n,k)*k^(n-k), version 1.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 3, 6, 1, 0, 4, 24, 12, 1, 0, 5, 80, 90, 20, 1, 0, 6, 240, 540, 240, 30, 1, 0, 7, 672, 2835, 2240, 525, 42, 1, 0, 8, 1792, 13608, 17920, 7000, 1008, 56, 1, 0, 9, 4608, 61236, 129024, 78750, 18144, 1764, 72, 1, 0, 10, 11520, 262440
Offset: 0
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 3, 6, 1;
0, 4, 24, 12, 1;
0, 5, 80, 90, 20, 1;
0, 6, 240, 540, 240, 30, 1;
0, 7, 672, 2835, 2240, 525, 42, 1;
Row 4. Expansion of x^4 in terms of Abel polynomials:
x^4 = -4*x+24*x*(x+2)-12*x*(x+3)^2+x*(x+4)^3.
O.g.f. for column 2: A(-2,1/x) = x^2/(1-2*x)^3 = x^2+6*x^3+24*x^4+80*x^5+....
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43 and p. 135, [3i'].
- Alois P. Heinz, Rows n = 0..140, flattened
- Peter Bala, Diagonals of triangles with generating function exp(t*F(x)).
- G. Duchamp, K. A. Penson, A. I. Solomon, A. Horzela and P. Blasiak, One-parameter groups and combinatorial physics, arXiv:quant-ph/0401126, 2004.
- Emanuele Munarini, Combinatorial identities involving the central coefficients of a Sheffer matrix, Applicable Analysis and Discrete Mathematics (2019) Vol. 13, 495-517.
- Bruce E. Sagan, A note on Abel polynomials and rooted labeled forests. Discrete Mathematics 44(3): 293-298 (1983).
- J. Taylor, Formal group laws and hypergraph colorings, doctoral thesis, Univ. of Wash., 2016, p. 96, [_Tom Copeland_, Dec 20 2018].
- Eric Weisstein's World of Mathematics, Abel Polynomial
- Eric Weisstein's World of Mathematics, Idempotent Number
- Jian Zhou, On Some Mathematics Related to the Interpolating Statistics, arXiv:2108.10514 [math-ph], 2021.
-
/* As triangle */ [[Binomial(n,k)*k^(n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 22 2015
-
T:= (n, k)-> binomial(n, k) *k^(n-k):
seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Sep 05 2012
-
nn=10;f[list_]:=Select[list,#>0&];Prepend[Map[Prepend[#,0]&,Rest[Map[f,Range[0,nn]!CoefficientList[Series[Exp[y x Exp[x]],{x,0,nn}],{x,y}]]]],{1}]//Grid (* Geoffrey Critzer, Feb 09 2013 *)
t[n_, k_] := Binomial[n, k]*k^(n - k); Prepend[Flatten@Table[t[n, k], {n, 10}, {k, 0, n}], 1] (* Arkadiusz Wesolowski, Mar 23 2013 *)
-
# uses[bell_transform from A264428]
def A059297_row(n):
nat = [k for k in (1..n)]
return bell_transform(n, nat)
[A059297_row(n) for n in range(8)] # Peter Luschny, Dec 20 2015
A137452
Triangular array of the coefficients of the sequence of Abel polynomials A(n,x) := x*(x-n)^(n-1).
Original entry on oeis.org
1, 0, 1, 0, -2, 1, 0, 9, -6, 1, 0, -64, 48, -12, 1, 0, 625, -500, 150, -20, 1, 0, -7776, 6480, -2160, 360, -30, 1, 0, 117649, -100842, 36015, -6860, 735, -42, 1, 0, -2097152, 1835008, -688128, 143360, -17920, 1344, -56, 1, 0, 43046721, -38263752, 14880348, -3306744, 459270, -40824, 2268, -72, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, -2, 1;
0, 9, -6, 1;
0, -64, 48, -12, 1;
0, 625, -500, 150, -20, 1;
0, -7776, 6480, -2160, 360, -30, 1;
0, 117649, -100842, 36015, -6860, 735, -42, 1;
0, -2097152, 1835008, -688128, 143360, -17920, 1344, -56, 1;
- Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 14 and 29
- Seiichi Manyama, Rows n = 0..139, flattened
- W. Y. Chen, A general bijective algorithm for trees, PNAS December 1, 1990 vol. 87 no. 24 9635-9639.
- L. E. Clarke, On Cayley's formula for counting trees, J. London Math. Soc. 33 (1958), 471-475.
- Péter L. Erdős and L. A. Székely, Applications of Antilexicographic Order. I., An Enumerative Theory of Trees, Adv. in Appl. Math. 10, (1989) 488-496.
- Eric Weisstein's World of Mathematics, Abel Polynomial.
- Wikipedia, Abel Polynomials.
- Bao-Xuan Zhu, Total positivity from a generalized cycle index polynomial, arXiv:2006.14485 [math.CO], 2020.
-
T := proc(n,k) if n = 0 and k = 0 then 1 else binomial(n-1,k-1)*(-n)^(n-k) fi end; seq(print(seq(T(n,k),k=0..n)),n=0..7); # Peter Luschny, Jan 14 2009
# The function BellMatrix is defined in A264428.
BellMatrix(n -> (-n-1)^n, 9); # Peter Luschny, Jan 27 2016
-
a0 = 1 a[x, 0] = 1; a[x, 1] = x; a[x_, n_] := x*(x - a0*n)^(n - 1); Table[Expand[a[x, n]], {n, 0, 10}]; a1 = Table[CoefficientList[a[x, n], x], {n, 0, 10}]; Flatten[a1]
(* Second program: *)
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
B = BellMatrix[Function[n, (-n-1)^n], rows = 12];
Table[B[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
-
# uses[inverse_bell_transform from A264429]
def A137452_matrix(dim):
nat = [n for n in (1..dim)]
return inverse_bell_transform(dim, nat)
A137452_matrix(10) # Peter Luschny, Dec 20 2015
A245910
Number A(n,k) of pairs of endofunctions f, g on [n] satisfying f(g^k(i)) = f(i) for all i in [n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 16, 1, 1, 10, 729, 1, 1, 12, 159, 65536, 1, 1, 10, 249, 3496, 9765625, 1, 1, 12, 207, 7744, 98345, 2176782336, 1, 1, 10, 249, 6856, 326745, 3373056, 678223072849, 1, 1, 12, 159, 9184, 302345, 17773056, 136535455, 281474976710656
Offset: 0
Square array A(n,k) begins:
0 : 1, 1, 1, 1, 1, 1, ...
1 : 1, 1, 1, 1, 1, 1, ...
2 : 16, 10, 12, 10, 12, 10, ...
3 : 729, 159, 249, 207, 249, 159, ...
4 : 65536, 3496, 7744, 6856, 9184, 3496, ...
5 : 9765625, 98345, 326745, 302345, 488745, 173225, ...
Columns k=0-10 give:
A062206,
A239761,
A239777,
A245912,
A245913,
A245914,
A245915,
A245916,
A245917,
A245918,
A245919.
-
with(combinat):
b:= proc(n, i, k) option remember; unapply(`if`(n=0 or i=1, x^n,
expand(add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
x^(igcd(i, k)*j)*b(n-i*j, i-1, k)(x), j=0..n/i))), x)
end:
A:= (n, k)-> `if`(k=0, n^(2*n), add(binomial(n-1, j-1)*n^(n-j)*
b(j$2, k)(n), j=0..n)):
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = Function[{x}, If[n == 0 || i == 1, x^n, Expand[Sum[(i-1)!^j*multinomial[n, Join[{ n-i*j}, Array[i&, j]]]/j!*x^(GCD[i, k]*j)*b[n-i*j, i-1, k][x], {j, 0, n/i}]]]]; A[0, ] = 1; A[n, k_] := If[k == 0, n^(2n), Sum[Binomial[n-1, j-1]*n^(n-j)* b[j, j, k][n], {j, 0, n}]]; Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 04 2015, after Alois P. Heinz *)
A007334
Number of spanning trees in the graph K_{n}/e, which results from contracting an edge e in the complete graph K_{n} on n vertices (for n>=2).
Original entry on oeis.org
1, 2, 8, 50, 432, 4802, 65536, 1062882, 20000000, 428717762, 10319560704, 275716983698, 8099130339328, 259492675781250, 9007199254740992, 336755653118801858, 13493281232954916864, 576882827135242335362, 26214400000000000000000
Offset: 2
a(3)=2 because K_{3}/e consists of two vertices and two parallel edges, where each edge is a spanning tree.
- J. Oxley, Matroid Theory, Oxford University Press, 1992.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alin Bostan, Frédéric Chyzak, Bérénice Delcroix-Oger, Guillaume Laplante-Anfossi, Vincent Pilaud, and Kurt Stoeckl, Diagonals of permutahedra and associahedra, Sém. Lotharingien Comb., 37th Formal Power Series Alg. Comb. (FPSAC 2025). See p. 7.
- W.-K. Chen and I. C. Goyal, Tables of essential complementary partitions, IEEE Trans. Circuit Theory, 18 (1971), 562-563.
- W.-K. Chen and I. C. Goyal, Tables of essential complementary partitions, IEEE Trans. Circuit Theory, 18 (1971), 562-563. (Annotated scanned copy)
- Spencer Daugherty, Pamela E. Harris, Ian Klein, and Matt McClinton, Metered Parking Functions, arXiv:2406.12941 [math.CO], 2024. See pp. 19, 22.
- N. Eaton, W. Kook and L. Thoma, Monotonicity for complete graphs, preprint, 2003.
- Jean-Baptiste Priez and Aladin Virmaux, Non-commutative Frobenius characteristic of generalized parking functions: Application to enumeration, arXiv:1411.4161 [math.CO], 2014-2015.
- Dennis Walsh, Notes on acyclic functions
-
nn = 17; tx = Sum[n^(n - 1) x^n/n!, {n, 1, nn}];
Range[0, nn]! CoefficientList[Series[Exp[ tx]^2, {x, 0, nn}], x] (* Geoffrey Critzer, May 10 2013 *)
-
{a(n)=if(n==2, 1, 1-polcoeff(sum(k=2, n-1, a(k)*x^k/(1+(k-1)*x+x*O(x^n))^(k-1)), n))} /* Paul D. Hanna, Jan 17 2013 */
After correction, this became identical (except for the offset) with
A089104, contributed by N. Eaton, W. Kook and L. Thoma (andrewk(AT)math.uri.edu), Jan 17 2004. The two entries have been merged using the older A-number. -
N. J. A. Sloane, Dec 19 2017
A368924
Triangle read by rows where T(n,k) is the number of labeled loop-graphs on n vertices with k loops and n-k non-loops such that it is possible to choose a different vertex from each edge.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 1, 9, 6, 1, 15, 68, 48, 12, 1, 222, 720, 510, 150, 20, 1, 3670, 9738, 6825, 2180, 360, 30, 1, 68820, 159628, 110334, 36960, 6895, 735, 42, 1, 1456875, 3067320, 2090760, 721560, 145530, 17976, 1344, 56, 1, 34506640, 67512798, 45422928, 15989232, 3402756, 463680, 40908, 2268, 72, 1
Offset: 0
Triangle begins:
1
0 1
0 2 1
1 9 6 1
15 68 48 12 1
222 720 510 150 20 1
3670 9738 6825 2180 360 30 1
68820 159628 110334 36960 6895 735 42 1
Row n = 3 counts the following loop-graphs:
{{1,2},{1,3},{2,3}} {{1},{1,2},{1,3}} {{1},{2},{1,3}} {{1},{2},{3}}
{{1},{1,2},{2,3}} {{1},{2},{2,3}}
{{1},{1,3},{2,3}} {{1},{3},{1,2}}
{{2},{1,2},{1,3}} {{1},{3},{2,3}}
{{2},{1,2},{2,3}} {{2},{3},{1,2}}
{{2},{1,3},{2,3}} {{2},{3},{1,3}}
{{3},{1,2},{1,3}}
{{3},{1,2},{2,3}}
{{3},{1,3},{2,3}}
Cf.
A000169,
A057500,
A062740,
A129271,
A133686,
A322661,
A367869,
A367902,
A368601,
A368835,
A368836,
A368927.
-
Table[Length[Select[Subsets[Subsets[Range[n],{1,2}],{n}], Count[#,{_}]==k&&Length[Select[Tuples[#], UnsameQ@@#&]]!=0&]],{n,0,5},{k,0,n}]
-
T(n)={my(t=-lambertw(-x + O(x*x^n))); [Vecrev(p) | p <- Vec(serlaplace(exp(-log(1-t)/2 - t/2 + t*y - t^2/4)))]}
{ my(A=T(8)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 14 2024
A074059
Dimension of the cohomology ring of the moduli space of n-pointed curves of genus 0 satisfying the associativity equations of physics (also known as the WDVV equations).
Original entry on oeis.org
1, 1, 2, 7, 34, 213, 1630, 14747, 153946, 1821473, 24087590, 352080111, 5636451794, 98081813581, 1843315388078, 37209072076483, 802906142007946, 18443166021077145, 449326835001457846, 11572432709175470807, 314160322966817351938, 8965995574654847062469
Offset: 1
From _Paul D. Hanna_, Sep 24 2010: (Start)
E.g.f.: x + x^2/2! + 2*x^3/3! + 7*x^4/4! + 34*x^5/5! + 213*x^6/6! +...
The series reversion of the e.g.f. begins:
x - x^2/2 + x^3/6 - x^4/12 + x^5/20 - x^6/30 + x^7/42 - x^8/56 +... (End)
- Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
- V. M. Buchstaber and A. P. Veselov, Differential algebra of polytopes and inversion formulas, arXiv:2402.07168 [math.CO], 2024. See p. 9.
- Brian Drake, Ira M. Gessel, and Guoce Xin, Three Proofs and a Generalization of the Goulden-Litsyn-Shevelev Conjecture on a Sequence Arising in Algebraic Geometry, J. of Integer Sequences, Vol. 10 (2007), #07.3.7.
- I. P. Goulden, S. Litsyn, and V. Shevelev, On a Sequence Arising in Algebraic Geometry, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.7.
- S. Keel, Intersection theory of moduli space of stable n-pointed curves of genus zero, Trans. Amer. Math. Soc. 330 (1992), 545-574.
- M. Kontsevich and Y. Manin, Quantum cohomology of a product, (with Appendix by R. Kaufmann), Inv. Math. 124, f. 1-3 (1996) 313-339.
- Curtis T. McMullen, Moduli spaces in genus zero and inversion of power series, (2012).
- Margaret Readdy, The pre-WDVV ring of physics and its topology, arXiv:math/0511420 [math.CO], The Ramanujan Journal, Special issue on the Number Theory and Combinatorics in Physics, 10 (2005), 269-281.
- Elena L. Wang and Guoce Xin, On Ward Numbers and Increasing Schröder Trees, arXiv:2507.15654 [math.CO], 2025. See pp. 12-13.
-
series(exp(LambertW(-exp(-2)*(2+x))+2)-1,x,30): A:=simplify(%,symbolic): A074059:=n->n!*coeff(A,x,n): # Gessel
-
max = 19; $Assumptions = x > 0; (Series[ Exp[2 + ProductLog[-1, -(x+2)/E^2]] - 1, {x, 0, 19}] // CoefficientList[#, x] &) * Range[0, 19]! // Rest (* Jean-François Alcover, Jun 20 2013 *)
-
{a(n)=if(n<1,0,n!*polcoeff(serreverse(x-sum(k=2,n,(-x)^k/(k*(k-1)))+x*O(x^n)),n))} \\ Paul D. Hanna, Sep 24 2010
A059298
Triangle of idempotent numbers binomial(n,k)*k^(n-k), version 2.
Original entry on oeis.org
1, 2, 1, 3, 6, 1, 4, 24, 12, 1, 5, 80, 90, 20, 1, 6, 240, 540, 240, 30, 1, 7, 672, 2835, 2240, 525, 42, 1, 8, 1792, 13608, 17920, 7000, 1008, 56, 1, 9, 4608, 61236, 129024, 78750, 18144, 1764, 72, 1, 10, 11520, 262440, 860160, 787500, 272160, 41160
Offset: 0
Triangle begins
1;
2, 1;
3, 6, 1;
4, 24, 12, 1; ...
From _Peter Bala_, Jul 22 2014: (Start)
With the arrays M(k) as defined in the Comments section, the infinite product M(0)*M(1)*M(2)*... begins
/1 \/1 \/1 \ /1 \
|2 1 ||0 1 ||0 1 | |2 1 |
|3 4 1 ||0 2 1 ||0 0 1 |... = |3 6 1 |
|4 9 6 1 ||0 3 4 1 ||0 0 2 1 | |4 24 12 1 |
|5 16 18 8 1||0 4 9 6 1||0 0 3 4 1| |5 80 90 20 1|
|... ||... ||... | |... | (End)
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43 and p. 135, [3i'].
-
/* As triangle */ [[Binomial(n,k)*k^(n-k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Aug 22 2015
-
T:= (n, k)-> binomial(n+1,k+1)*(k+1)^(n-k): seq(seq(T(n, k), k=0..n), n=0..10); # Georg Fischer, Oct 27 2021
-
t = Transpose[ Table[ Range[0, 11]! CoefficientList[ Series[(x Exp[x])^n/n!, {x, 0, 11}], x], {n, 11}]]; Table[ t[[n, k]], {n, 2, 11}, {k, n - 1}] // Flatten (* or simply *)
t[n_, k_] := Binomial[n, k]*k^(n - k); Table[t[n, k], {n, 10}, {k, n}] // Flatten
-
for(n=1, 25, for(k=1, n, print1(binomial(n,k)*k^(n-k), ", "))) \\ G. C. Greubel, Jan 05 2017
-
# uses[bell_matrix from A264428]
# Adds a column 1,0,0,0, ... at the left side of the triangle.
bell_matrix(lambda n: n+1, 10) # Peter Luschny, Jan 18 2016
A241980
Number of endofunctions on [n] where all cycle lengths are equal.
Original entry on oeis.org
1, 1, 4, 24, 206, 2300, 31742, 522466, 9996478, 218088504, 5344652492, 145386399554, 4347272984936, 141737636485588, 5004538251283846, 190247639729155110, 7747479351505166738, 336492490519027631984, 15526758954835131888980, 758548951300064645742034
Offset: 0
-
with(numtheory):
b:= n-> `if`(n=0, 1, n!*add((d!*(n/d)^d)^(-1), d=divisors(n))):
a:= n-> add(binomial(n-1, j-1)*n^(n-j)*b(j), j=0..n):
seq(a(n), n=0..25);
-
nn=20;t[x_]:=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[Series[1+Sum[Exp[t[x]^i/i]-1,{i,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Aug 11 2014 *)
Showing 1-10 of 13 results.
Comments