A062206
a(n) = n^(2n).
Original entry on oeis.org
1, 1, 16, 729, 65536, 9765625, 2176782336, 678223072849, 281474976710656, 150094635296999121, 100000000000000000000, 81402749386839761113321, 79496847203390844133441536, 91733330193268616658399616009, 123476695691247935826229781856256
Offset: 0
A245980
Number A(n,k) of pairs of endofunctions f, g on [n] satisfying g^k(f(i)) = f(i) for all i in [n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 16, 1, 1, 6, 729, 1, 1, 10, 87, 65536, 1, 1, 6, 213, 2200, 9765625, 1, 1, 10, 141, 8056, 84245, 2176782336, 1, 1, 6, 213, 6184, 465945, 4492656, 678223072849, 1, 1, 10, 87, 9592, 387545, 37823616, 315937195, 281474976710656
Offset: 0
Square array A(n,k) begins:
0 : 1, 1, 1, 1, 1, 1, ...
1 : 1, 1, 1, 1, 1, 1, ...
2 : 16, 6, 10, 6, 10, 6, ...
3 : 729, 87, 213, 141, 213, 87, ...
4 : 65536, 2200, 8056, 6184, 9592, 2200, ...
5 : 9765625, 84245, 465945, 387545, 682545, 159245, ...
Columns k=0-10 give:
A062206,
A239750,
A239771,
A241015,
A245981,
A245982,
A245983,
A245984,
A245985,
A245986,
A245987.
-
with(numtheory): with(combinat): M:=multinomial:
b:= proc(n, k, p) local l, g; l, g:= sort([divisors(p)[]]),
proc(k, m, i, t) option remember; local d, j; d:= l[i];
`if`(i=1, n^m, add(M(k, k-(d-t)*j, (d-t)$j)/j!*
(d-1)!^j *M(m, m-t*j, t$j) *g(k-(d-t)*j, m-t*j,
`if`(d-t=1, [i-1, 0], [i, t+1])[]), j=0..min(k/(d-t),
`if`(t=0, [][], m/t))))
end; g(k, n-k, nops(l), 0)
end:
A:= (n, k)-> `if`(k=0, n^(2*n), add(b(n, j, k)*
stirling2(n, j)*binomial(n, j)*j!, j=0..n)):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
multinomial[n_, k_List] := n!/Times @@ (k!); M = multinomial;
b[n_, k0_, p_] := Module[{l, g}, l = Sort[Divisors[p]]; g[k_, m_, i_, t_] := g[k, m, i, t] = Module[{d, j}, d = l[[i]]; If[i == 1, n^m, Sum[M[k, Join[{k - (d-t)*j}, Array[(d - t)&, j]]]/ j!*(d-1)!^j * M[m, Join[{m - t*j}, Array[t&, j]]]*If[d-t == 1, g[k - (d - t)*j, m - t*j, i-1, 0], g[k - (d-t)*j, m - t*j, i, t+1]], {j, 0, Min[k/(d-t), If[t == 0, Infinity, m/t]]}]]]; g[k0, n-k0, Length[l], 0]];
A[n_, k_] := If[k == 0, n^(2*n), Sum[b[n, j, k]*StirlingS2[n, j]* Binomial[n, j]*j!, {j, 0, n}]]; A[0, ] = 1; A[1, ] = 1;
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Jan 27 2015, after Alois P. Heinz *)
A239761
Number of pairs of functions (f, g) on a set of n elements into itself satisfying f(g(x)) = f(x).
Original entry on oeis.org
1, 1, 10, 159, 3496, 98345, 3373056, 136535455, 6371523712, 336784920849, 19888195110400, 1297716672601151, 92721494240225280, 7199830049013964921, 603715489091812335616, 54366622743565012989375, 5233114241479255004839936, 536180296483497244155041825
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-j, i-1)*binomial(n, j)*j^j, j=0..n)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..20); # Alois P. Heinz, Jul 17 2014
-
f4[n_] := Sum[n^k Sum[Binomial[n - 1, j]*n^(n - 1 - j)*StirlingS1[j + 1, k] *(-1)^(j + k + 1), {j, 0, n - 1}], {k, 1, n}] (* David Einstein, Oct 31 2016 *)
A245911
Number of pairs of endofunctions f, g on [n] satisfying f(g^n(i)) = f(i) for all i in [n].
Original entry on oeis.org
1, 1, 12, 207, 9184, 173225, 46097856, 729481375, 454190410752, 30607186160529, 12762075858688000, 1036636706945881151, 3080713389889966460928, 145084860487902521548921, 124325137916420574135066624, 56537825009822523196823829375
Offset: 0
-
with(combinat):
T:= proc(n, j) T(n, j):= binomial(n-1, j-1)*n^(n-j) end:
b:= proc(n, i, k) option remember; `if`(n=0 or i=1, x^n,
expand(add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
x^(igcd(i, k)*j)*b(n-i*j, i-1, k), j=0..n/i)))
end:
a:= n-> add((p-> add(n^i*T(n, j)* coeff(p, x, i),
i=0..degree(p)))(b(j$2, n)), j=0..n):
seq(a(n), n=0..20);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, k_] := b[n, i, k] = Function[{x}, If[n == 0 || i == 1, x^n, Expand[Sum[(i - 1)!^j*multinomial[n, Join[{n - i*j}, Array[i&, j]]]/j!* x^(GCD[i, k]*j)*b[n - i*j, i - 1, k][x], {j, 0, n/i}]]]];
a[n_] := If[n == 0, 1, Sum[Binomial[n - 1, j - 1]*n^(n - j)*b[j, j, n][n], {j, 0, n}]];
a /@ Range[0, 20] (* Jean-François Alcover, Oct 03 2019, after Alois P. Heinz *)
A239777
Number of pairs of functions f, g on a size n set into itself satisfying f(g(g(x))) = f(x).
Original entry on oeis.org
1, 1, 12, 249, 7744, 326745, 17773056, 1197261289, 97165842432, 9294416254161, 1030298497753600, 130527793649586201, 18685034341191917568, 2993332161753700720681, 532270629438646194561024, 104316725427708352041239625, 22394627939996943667912769536
Offset: 0
-
s:= proc(n, i) option remember; `if`(i=0, [[]],
map(x-> seq([j, x[]], j=1..n), s(n, i-1)))
end:
a:= proc(n) (l-> add(add(`if`([true$n]=[seq(evalb(
f[g[g[i]]]=f[i]), i=1..n)], 1, 0), g=l), f=l))(s(n$2))
end:
seq(a(n), n=0..5); # Alois P. Heinz, Jul 16 2014
# second Maple program:
with(combinat):
b:= proc(n, i) option remember; `if`(n=0 or i=1, x^n,
expand(add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!
*x^((2-irem(i, 2))*j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> add((p-> add(n^i*binomial(n-1, k-1)*n^(n-k)*
coeff(p, x, i), i=0..degree(p)))(b(k$2)), k=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 06 2014
-
c[n_] := c[n] =
Sum[(n - 1)! n^(n - k)/(n - k)! t^(1 + Mod[k + 1, 2]), {k, 1, n}]
d[0] = 1
d[n_] := d[n] = Sum[Binomial[n - 1, k]*d[k]*c[n - k], {k, 0, n - 1}]
a[n_] := d[n] /. t -> n
Table[a[n], {n, 1, 10}] (* David Einstein, Nov 02 2016*)
A245912
Number of pairs of endofunctions f, g on [n] satisfying f(g^3(i)) = f(i) for all i in [n].
Original entry on oeis.org
1, 1, 10, 207, 6856, 302345, 17812656, 1384059775, 131612023936, 14986421437329, 2051598980742400, 327546779949753551, 59790068922261980160, 12505503377433451819993, 2956768061598853524176896, 778675046844529953944661375, 228393818322135051214683406336
Offset: 0
-
with(combinat):
T:= proc(n, j) option remember; binomial(n-1, j-1)*n^(n-j) end:
b:= proc(n, i) option remember; `if`(n=0 or i=1, x^n,
expand(add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
x^(igcd(i, 3)*j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> add((p-> add(n^i*T(n, j)* coeff(p, x, i),
i=0..degree(p)))(b(j$2)), j=0..n):
seq(a(n), n=0..20);
A245913
Number of pairs of endofunctions f, g on [n] satisfying f(g^4(i)) = f(i) for all i in [n].
Original entry on oeis.org
1, 1, 12, 249, 9184, 488745, 35463456, 3212948809, 369653885952, 52089606360081, 8863922597593600, 1752215974571247801, 402913941534323970048, 106177876504463493003001, 31939024924944619647750144, 10756222724503803551432639625, 4050020577581980281160989147136
Offset: 0
-
with(combinat):
T:= proc(n, j) option remember; binomial(n-1, j-1)*n^(n-j) end:
b:= proc(n, i) option remember; `if`(n=0 or i=1, x^n,
expand(add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
x^(igcd(i, 4)*j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> add((p-> add(n^i*T(n, j)* coeff(p, x, i),
i=0..degree(p)))(b(j$2)), j=0..n):
seq(a(n), n=0..20);
A245914
Number of pairs of endofunctions f, g on [n] satisfying f(g^5(i)) = f(i) for all i in [n].
Original entry on oeis.org
1, 1, 10, 159, 3496, 173225, 15680736, 1618295455, 169456569472, 17962132149009, 2673715009888000, 652752279443748671, 185425990150444922880, 50400836024570702513401, 12815973354809222836596736, 3862679850655546273674429375, 1722827488179450551983866413056
Offset: 0
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0 or i=1, x^n,
expand(add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
x^(igcd(i, 5)*j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> add(binomial(n-1, j-1)*n^(n-j)*subs(x=n, b(j$2)), j=0..n):
seq(a(n), n=0..20);
A245915
Number of pairs of endofunctions f, g on [n] satisfying f(g^6(i)) = f(i) for all i in [n].
Original entry on oeis.org
1, 1, 12, 297, 11104, 578745, 46097856, 4892935369, 649893820416, 108501530261841, 21500188932505600, 4911081373878751401, 1343217062946070130688, 427404076347462876047113, 154711214699181287350984704, 64222714159878924347124911625
Offset: 0
-
with(combinat):
b:= proc(n, i) option remember; unapply(`if`(n=0 or i=1, x^n,
expand(add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
x^(igcd(i, 6)*j)*b(n-i*j, i-1)(x), j=0..n/i))), x)
end:
a:= n-> add(binomial(n-1, j-1)*n^(n-j)*b(j$2)(n), j=0..n):
seq(a(n), n=0..20);
A245916
Number of pairs of endofunctions f, g on [n] satisfying f(g^7(i)) = f(i) for all i in [n].
Original entry on oeis.org
1, 1, 10, 159, 3496, 98345, 3373056, 729481375, 187564765312, 37157158911249, 6404841810150400, 1033733019005497151, 162392131536566261760, 25373998461297751027321, 13879265226159974639036416, 11935104515280353051806269375, 7611603822558997773619173031936
Offset: 0
-
with(combinat):
b:= proc(n, i) option remember; unapply(`if`(n=0 or i=1, x^n,
expand(add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
x^(igcd(i, 7)*j)*b(n-i*j, i-1)(x), j=0..n/i))), x)
end:
a:= n-> add(binomial(n-1, j-1)*n^(n-j)*b(j$2)(n), j=0..n):
seq(a(n), n=0..20);
Showing 1-10 of 13 results.
Comments