cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A062206 a(n) = n^(2n).

Original entry on oeis.org

1, 1, 16, 729, 65536, 9765625, 2176782336, 678223072849, 281474976710656, 150094635296999121, 100000000000000000000, 81402749386839761113321, 79496847203390844133441536, 91733330193268616658399616009, 123476695691247935826229781856256
Offset: 0

Views

Author

Jason Earls, Jun 13 2001

Keywords

Comments

a(n) is also the number of sequences of length 2n on n symbols. - Washington Bomfim, Oct 06 2009
a(n) is the number of endofunctions on [n] that map each even number to an even number and each odd number to an odd number. - Enrique Navarrete, Sep 30 2022

Crossrefs

Column k=0 of A245910 and A245980.

Programs

Formula

a(n) = A000312(n)^2 = A000290(n)^n.
(-1)^n*determinant of the 2n X 2n matrix M_(i, j) = i+j if (i + j) is a multiple of n, M_(i, j) = 1 otherwise. - Benoit Cloitre, Aug 06 2003
a(n) = A155955(n,n) = A000290(A000312(n)). - Reinhard Zumkeller, Jan 31 2009
a(n) = n! * [x^n] 1/(1 + LambertW(-n*x)). - Ilya Gutkovskiy, Oct 03 2017
Sum_{n>=1} 1/a(n) = A086648. - Amiram Eldar, Nov 16 2020

Extensions

Initial term corrected by Reinhard Zumkeller, Jan 30 2009

A245980 Number A(n,k) of pairs of endofunctions f, g on [n] satisfying g^k(f(i)) = f(i) for all i in [n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 16, 1, 1, 6, 729, 1, 1, 10, 87, 65536, 1, 1, 6, 213, 2200, 9765625, 1, 1, 10, 141, 8056, 84245, 2176782336, 1, 1, 6, 213, 6184, 465945, 4492656, 678223072849, 1, 1, 10, 87, 9592, 387545, 37823616, 315937195, 281474976710656
Offset: 0

Views

Author

Alois P. Heinz, Aug 08 2014

Keywords

Examples

			Square array A(n,k) begins:
0 :        1,     1,      1,      1,      1,      1, ...
1 :        1,     1,      1,      1,      1,      1, ...
2 :       16,     6,     10,      6,     10,      6, ...
3 :      729,    87,    213,    141,    213,     87, ...
4 :    65536,  2200,   8056,   6184,   9592,   2200, ...
5 :  9765625, 84245, 465945, 387545, 682545, 159245, ...
		

Crossrefs

Main diagonal gives A245988.
Cf. A245910.

Programs

  • Maple
    with(numtheory): with(combinat): M:=multinomial:
    b:= proc(n, k, p) local l, g; l, g:= sort([divisors(p)[]]),
          proc(k, m, i, t) option remember; local d, j; d:= l[i];
            `if`(i=1, n^m, add(M(k, k-(d-t)*j, (d-t)$j)/j!*
             (d-1)!^j *M(m, m-t*j, t$j) *g(k-(d-t)*j, m-t*j,
            `if`(d-t=1, [i-1, 0], [i, t+1])[]), j=0..min(k/(d-t),
            `if`(t=0, [][], m/t))))
          end; g(k, n-k, nops(l), 0)
        end:
    A:= (n, k)-> `if`(k=0, n^(2*n), add(b(n, j, k)*
                 stirling2(n, j)*binomial(n, j)*j!, j=0..n)):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); M = multinomial;
    b[n_, k0_, p_] := Module[{l, g}, l = Sort[Divisors[p]]; g[k_, m_, i_, t_] := g[k, m, i, t] = Module[{d, j}, d = l[[i]]; If[i == 1, n^m, Sum[M[k, Join[{k - (d-t)*j}, Array[(d - t)&, j]]]/ j!*(d-1)!^j * M[m, Join[{m - t*j}, Array[t&, j]]]*If[d-t == 1, g[k - (d - t)*j, m - t*j, i-1, 0], g[k - (d-t)*j, m - t*j, i, t+1]], {j, 0, Min[k/(d-t), If[t == 0, Infinity, m/t]]}]]]; g[k0, n-k0, Length[l], 0]];
    A[n_, k_] := If[k == 0, n^(2*n), Sum[b[n, j, k]*StirlingS2[n, j]* Binomial[n, j]*j!, {j, 0, n}]]; A[0, ] = 1; A[1, ] = 1;
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Jan 27 2015, after Alois P. Heinz *)

A239761 Number of pairs of functions (f, g) on a set of n elements into itself satisfying f(g(x)) = f(x).

Original entry on oeis.org

1, 1, 10, 159, 3496, 98345, 3373056, 136535455, 6371523712, 336784920849, 19888195110400, 1297716672601151, 92721494240225280, 7199830049013964921, 603715489091812335616, 54366622743565012989375, 5233114241479255004839936, 536180296483497244155041825
Offset: 0

Views

Author

Chad Brewbaker, Mar 26 2014

Keywords

Crossrefs

Column k=1 of A245910.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-j, i-1)*binomial(n, j)*j^j, j=0..n)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 17 2014
  • Mathematica
    f4[n_] := Sum[n^k Sum[Binomial[n - 1, j]*n^(n - 1 - j)*StirlingS1[j + 1, k] *(-1)^(j + k + 1), {j, 0, n - 1}], {k, 1, n}] (* David Einstein, Oct 31 2016 *)

Formula

a(n) ~ 5^(-1/4) * ((1+sqrt(5))/2)^(3*n-1/2) * n^n / exp(2*n/(1+sqrt(5))). - Vaclav Kotesovec, Aug 07 2014
a(n) = Sum_{k = 1..n} A060281(n,k) n^k. - David Einstein, Oct 31 2016
a(n) = n! * [x^n] 1/(1 + LambertW(-x))^n. - Ilya Gutkovskiy, Oct 03 2017

Extensions

a(6)-a(7) from Giovanni Resta, Mar 28 2014
a(8)-a(17) from Alois P. Heinz, Jul 17 2014

A245911 Number of pairs of endofunctions f, g on [n] satisfying f(g^n(i)) = f(i) for all i in [n].

Original entry on oeis.org

1, 1, 12, 207, 9184, 173225, 46097856, 729481375, 454190410752, 30607186160529, 12762075858688000, 1036636706945881151, 3080713389889966460928, 145084860487902521548921, 124325137916420574135066624, 56537825009822523196823829375
Offset: 0

Views

Author

Alois P. Heinz, Aug 06 2014

Keywords

Crossrefs

Main diagonal of A245910.
Cf. A245988.

Programs

  • Maple
    with(combinat):
    T:= proc(n, j) T(n, j):= binomial(n-1, j-1)*n^(n-j) end:
    b:= proc(n, i, k) option remember; `if`(n=0 or i=1, x^n,
          expand(add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
          x^(igcd(i, k)*j)*b(n-i*j, i-1, k), j=0..n/i)))
        end:
    a:= n-> add((p-> add(n^i*T(n, j)* coeff(p, x, i),
            i=0..degree(p)))(b(j$2, n)), j=0..n):
    seq(a(n), n=0..20);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, i_, k_] := b[n, i, k] = Function[{x}, If[n == 0 || i == 1, x^n, Expand[Sum[(i - 1)!^j*multinomial[n, Join[{n - i*j}, Array[i&, j]]]/j!* x^(GCD[i, k]*j)*b[n - i*j, i - 1, k][x], {j, 0, n/i}]]]];
    a[n_] := If[n == 0, 1, Sum[Binomial[n - 1, j - 1]*n^(n - j)*b[j, j, n][n], {j, 0, n}]];
    a /@ Range[0, 20] (* Jean-François Alcover, Oct 03 2019, after Alois P. Heinz *)

A239777 Number of pairs of functions f, g on a size n set into itself satisfying f(g(g(x))) = f(x).

Original entry on oeis.org

1, 1, 12, 249, 7744, 326745, 17773056, 1197261289, 97165842432, 9294416254161, 1030298497753600, 130527793649586201, 18685034341191917568, 2993332161753700720681, 532270629438646194561024, 104316725427708352041239625, 22394627939996943667912769536
Offset: 0

Views

Author

Chad Brewbaker, Mar 26 2014

Keywords

Crossrefs

Column k=2 of A245910.

Programs

  • Maple
    s:= proc(n, i) option remember; `if`(i=0, [[]],
           map(x-> seq([j, x[]], j=1..n), s(n, i-1)))
        end:
    a:= proc(n) (l-> add(add(`if`([true$n]=[seq(evalb(
           f[g[g[i]]]=f[i]), i=1..n)], 1, 0), g=l), f=l))(s(n$2))
        end:
    seq(a(n), n=0..5);  # Alois P. Heinz, Jul 16 2014
    # second Maple program:
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0 or i=1, x^n,
          expand(add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!
           *x^((2-irem(i, 2))*j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> add((p-> add(n^i*binomial(n-1, k-1)*n^(n-k)*
        coeff(p, x, i), i=0..degree(p)))(b(k$2)), k=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 06 2014
  • Mathematica
    c[n_] := c[n] =
        Sum[(n - 1)! n^(n - k)/(n - k)! t^(1 + Mod[k + 1, 2]), {k, 1, n}]
    d[0] = 1
    d[n_] := d[n] = Sum[Binomial[n - 1, k]*d[k]*c[n - k], {k, 0, n - 1}]
    a[n_] := d[n] /. t -> n
    Table[a[n], {n, 1, 10}] (* David Einstein, Nov 02 2016*)

Extensions

a(6)-a(7) from Giovanni Resta, Mar 28 2014
a(8)-a(16) from Alois P. Heinz, Aug 06 2014

A245912 Number of pairs of endofunctions f, g on [n] satisfying f(g^3(i)) = f(i) for all i in [n].

Original entry on oeis.org

1, 1, 10, 207, 6856, 302345, 17812656, 1384059775, 131612023936, 14986421437329, 2051598980742400, 327546779949753551, 59790068922261980160, 12505503377433451819993, 2956768061598853524176896, 778675046844529953944661375, 228393818322135051214683406336
Offset: 0

Views

Author

Alois P. Heinz, Aug 06 2014

Keywords

Crossrefs

Column k=3 of A245910.

Programs

  • Maple
    with(combinat):
    T:= proc(n, j) option remember; binomial(n-1, j-1)*n^(n-j) end:
    b:= proc(n, i) option remember; `if`(n=0 or i=1, x^n,
          expand(add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
          x^(igcd(i, 3)*j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> add((p-> add(n^i*T(n, j)* coeff(p, x, i),
            i=0..degree(p)))(b(j$2)), j=0..n):
    seq(a(n), n=0..20);

A245913 Number of pairs of endofunctions f, g on [n] satisfying f(g^4(i)) = f(i) for all i in [n].

Original entry on oeis.org

1, 1, 12, 249, 9184, 488745, 35463456, 3212948809, 369653885952, 52089606360081, 8863922597593600, 1752215974571247801, 402913941534323970048, 106177876504463493003001, 31939024924944619647750144, 10756222724503803551432639625, 4050020577581980281160989147136
Offset: 0

Views

Author

Alois P. Heinz, Aug 06 2014

Keywords

Crossrefs

Column k=4 of A245910.

Programs

  • Maple
    with(combinat):
    T:= proc(n, j) option remember; binomial(n-1, j-1)*n^(n-j) end:
    b:= proc(n, i) option remember; `if`(n=0 or i=1, x^n,
          expand(add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
          x^(igcd(i, 4)*j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> add((p-> add(n^i*T(n, j)* coeff(p, x, i),
            i=0..degree(p)))(b(j$2)), j=0..n):
    seq(a(n), n=0..20);

A245914 Number of pairs of endofunctions f, g on [n] satisfying f(g^5(i)) = f(i) for all i in [n].

Original entry on oeis.org

1, 1, 10, 159, 3496, 173225, 15680736, 1618295455, 169456569472, 17962132149009, 2673715009888000, 652752279443748671, 185425990150444922880, 50400836024570702513401, 12815973354809222836596736, 3862679850655546273674429375, 1722827488179450551983866413056
Offset: 0

Views

Author

Alois P. Heinz, Aug 06 2014

Keywords

Crossrefs

Column k=5 of A245910.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0 or i=1, x^n,
          expand(add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
          x^(igcd(i, 5)*j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> add(binomial(n-1, j-1)*n^(n-j)*subs(x=n, b(j$2)), j=0..n):
    seq(a(n), n=0..20);

A245915 Number of pairs of endofunctions f, g on [n] satisfying f(g^6(i)) = f(i) for all i in [n].

Original entry on oeis.org

1, 1, 12, 297, 11104, 578745, 46097856, 4892935369, 649893820416, 108501530261841, 21500188932505600, 4911081373878751401, 1343217062946070130688, 427404076347462876047113, 154711214699181287350984704, 64222714159878924347124911625
Offset: 0

Views

Author

Alois P. Heinz, Aug 06 2014

Keywords

Crossrefs

Column k=6 of A245910.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; unapply(`if`(n=0 or i=1, x^n,
          expand(add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
          x^(igcd(i, 6)*j)*b(n-i*j, i-1)(x), j=0..n/i))), x)
        end:
    a:= n-> add(binomial(n-1, j-1)*n^(n-j)*b(j$2)(n), j=0..n):
    seq(a(n), n=0..20);

A245916 Number of pairs of endofunctions f, g on [n] satisfying f(g^7(i)) = f(i) for all i in [n].

Original entry on oeis.org

1, 1, 10, 159, 3496, 98345, 3373056, 729481375, 187564765312, 37157158911249, 6404841810150400, 1033733019005497151, 162392131536566261760, 25373998461297751027321, 13879265226159974639036416, 11935104515280353051806269375, 7611603822558997773619173031936
Offset: 0

Views

Author

Alois P. Heinz, Aug 06 2014

Keywords

Crossrefs

Column k=7 of A245910.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; unapply(`if`(n=0 or i=1, x^n,
          expand(add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
          x^(igcd(i, 7)*j)*b(n-i*j, i-1)(x), j=0..n/i))), x)
        end:
    a:= n-> add(binomial(n-1, j-1)*n^(n-j)*b(j$2)(n), j=0..n):
    seq(a(n), n=0..20);
Showing 1-10 of 13 results. Next