cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A245910 Number A(n,k) of pairs of endofunctions f, g on [n] satisfying f(g^k(i)) = f(i) for all i in [n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 16, 1, 1, 10, 729, 1, 1, 12, 159, 65536, 1, 1, 10, 249, 3496, 9765625, 1, 1, 12, 207, 7744, 98345, 2176782336, 1, 1, 10, 249, 6856, 326745, 3373056, 678223072849, 1, 1, 12, 159, 9184, 302345, 17773056, 136535455, 281474976710656
Offset: 0

Views

Author

Alois P. Heinz, Aug 06 2014

Keywords

Examples

			Square array A(n,k) begins:
0 :        1,     1,      1,      1,      1,      1, ...
1 :        1,     1,      1,      1,      1,      1, ...
2 :       16,    10,     12,     10,     12,     10, ...
3 :      729,   159,    249,    207,    249,    159, ...
4 :    65536,  3496,   7744,   6856,   9184,   3496, ...
5 :  9765625, 98345, 326745, 302345, 488745, 173225, ...
		

Crossrefs

Main diagonal gives A245911.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i, k) option remember; unapply(`if`(n=0 or i=1, x^n,
          expand(add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
          x^(igcd(i, k)*j)*b(n-i*j, i-1, k)(x), j=0..n/i))), x)
        end:
    A:= (n, k)-> `if`(k=0, n^(2*n), add(binomial(n-1, j-1)*n^(n-j)*
                  b(j$2, k)(n), j=0..n)):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = Function[{x}, If[n == 0 || i == 1, x^n, Expand[Sum[(i-1)!^j*multinomial[n, Join[{ n-i*j}, Array[i&, j]]]/j!*x^(GCD[i, k]*j)*b[n-i*j, i-1, k][x], {j, 0, n/i}]]]]; A[0, ] = 1; A[n, k_] := If[k == 0, n^(2n), Sum[Binomial[n-1, j-1]*n^(n-j)* b[j, j, k][n], {j, 0, n}]]; Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 04 2015, after Alois P. Heinz *)

A295188 Decimal expansion of phi^3 * exp(1 - 1/phi), where phi is the golden ratio.

Original entry on oeis.org

6, 2, 0, 6, 5, 2, 7, 0, 3, 8, 3, 9, 7, 1, 6, 3, 7, 3, 1, 0, 0, 0, 7, 4, 0, 5, 3, 2, 1, 8, 6, 5, 8, 0, 5, 8, 5, 2, 7, 8, 0, 5, 2, 8, 7, 0, 8, 4, 7, 9, 6, 2, 0, 2, 2, 9, 2, 6, 0, 7, 5, 3, 9, 6, 8, 7, 9, 0, 5, 8, 4, 9, 3, 7, 5, 6, 1, 4, 1, 8, 4, 4, 4, 3, 5, 6, 3, 1, 1, 2, 2, 6, 1, 0, 2, 3, 0, 5, 0, 6, 3, 7, 0, 2, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Nov 16 2017

Keywords

Examples

			6.206527038397163731000740532186580585278052870847962022926...
		

Crossrefs

Programs

  • Maple
    evalf(((1+sqrt(5))/2)^3 * exp(1 - 2/(1+sqrt(5))), 120);
  • Mathematica
    RealDigits[GoldenRatio^3 * Exp[1 - 1/GoldenRatio], 10, 110][[1]]
  • PARI
    phi=(sqrt(5)+1)/2; phi^3*exp(2-phi) \\ Charles R Greathouse IV, Nov 21 2024

Formula

Equals ((1+sqrt(5))/2)^3 * exp(1 - 2/(1+sqrt(5))).
Equals limit n->infinity (A066399(n)/n!)^(1/n).
Equals limit n->infinity (A239761(n)/n!)^(1/n).
Equals limit n->infinity (A295183(n)/n!)^(1/n).

A332048 a(n) = n! * [x^n] 1 / (1 - LambertW(x))^n.

Original entry on oeis.org

1, 1, 2, 15, 104, 1145, 13824, 208831, 3536000, 68918769, 1489702400, 35742514511, 937323767808, 26750313223465, 824073079660544, 27276657371589375, 965004380380626944, 36347144974616190689, 1451974448007830568960, 61319892272079181137679, 2729671240750270054400000
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 06 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[1/(1 - LambertW[x])^n, {x, 0, n}], {n, 0, 20}]
    Join[{1}, Table[Sum[Sum[(-1)^(n - k) Binomial[n - 1, j] StirlingS1[j + 1, k] n^(n + k - j - 1), {j, 0, n - 1}], {k, 0, n}], {n, 1, 20}]]

Formula

a(n) = Sum_{k=0..n} Sum_{j=0..n-1} (-1)^(n - k) * binomial(n - 1, j) * Stirling1(j + 1, k) * n^(n + k - j - 1) for n > 0.
a(n) ~ phi^(3*n + 1/2) * n^n / (5^(1/4) * exp(n + n/phi)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Feb 07 2020
Showing 1-3 of 3 results.