cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A062206 a(n) = n^(2n).

Original entry on oeis.org

1, 1, 16, 729, 65536, 9765625, 2176782336, 678223072849, 281474976710656, 150094635296999121, 100000000000000000000, 81402749386839761113321, 79496847203390844133441536, 91733330193268616658399616009, 123476695691247935826229781856256
Offset: 0

Views

Author

Jason Earls, Jun 13 2001

Keywords

Comments

a(n) is also the number of sequences of length 2n on n symbols. - Washington Bomfim, Oct 06 2009
a(n) is the number of endofunctions on [n] that map each even number to an even number and each odd number to an odd number. - Enrique Navarrete, Sep 30 2022

Crossrefs

Column k=0 of A245910 and A245980.

Programs

Formula

a(n) = A000312(n)^2 = A000290(n)^n.
(-1)^n*determinant of the 2n X 2n matrix M_(i, j) = i+j if (i + j) is a multiple of n, M_(i, j) = 1 otherwise. - Benoit Cloitre, Aug 06 2003
a(n) = A155955(n,n) = A000290(A000312(n)). - Reinhard Zumkeller, Jan 31 2009
a(n) = n! * [x^n] 1/(1 + LambertW(-n*x)). - Ilya Gutkovskiy, Oct 03 2017
Sum_{n>=1} 1/a(n) = A086648. - Amiram Eldar, Nov 16 2020

Extensions

Initial term corrected by Reinhard Zumkeller, Jan 30 2009

A245910 Number A(n,k) of pairs of endofunctions f, g on [n] satisfying f(g^k(i)) = f(i) for all i in [n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 16, 1, 1, 10, 729, 1, 1, 12, 159, 65536, 1, 1, 10, 249, 3496, 9765625, 1, 1, 12, 207, 7744, 98345, 2176782336, 1, 1, 10, 249, 6856, 326745, 3373056, 678223072849, 1, 1, 12, 159, 9184, 302345, 17773056, 136535455, 281474976710656
Offset: 0

Views

Author

Alois P. Heinz, Aug 06 2014

Keywords

Examples

			Square array A(n,k) begins:
0 :        1,     1,      1,      1,      1,      1, ...
1 :        1,     1,      1,      1,      1,      1, ...
2 :       16,    10,     12,     10,     12,     10, ...
3 :      729,   159,    249,    207,    249,    159, ...
4 :    65536,  3496,   7744,   6856,   9184,   3496, ...
5 :  9765625, 98345, 326745, 302345, 488745, 173225, ...
		

Crossrefs

Main diagonal gives A245911.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i, k) option remember; unapply(`if`(n=0 or i=1, x^n,
          expand(add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
          x^(igcd(i, k)*j)*b(n-i*j, i-1, k)(x), j=0..n/i))), x)
        end:
    A:= (n, k)-> `if`(k=0, n^(2*n), add(binomial(n-1, j-1)*n^(n-j)*
                  b(j$2, k)(n), j=0..n)):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = Function[{x}, If[n == 0 || i == 1, x^n, Expand[Sum[(i-1)!^j*multinomial[n, Join[{ n-i*j}, Array[i&, j]]]/j!*x^(GCD[i, k]*j)*b[n-i*j, i-1, k][x], {j, 0, n/i}]]]]; A[0, ] = 1; A[n, k_] := If[k == 0, n^(2n), Sum[Binomial[n-1, j-1]*n^(n-j)* b[j, j, k][n], {j, 0, n}]]; Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 04 2015, after Alois P. Heinz *)

A241015 Number of pairs of endofunctions f, g on [n] satisfying g(g(g(f(i)))) = f(i) for all i in [n].

Original entry on oeis.org

1, 1, 6, 141, 6184, 387545, 33404256, 3891981205, 592320594048, 113184611671473, 26327424526220800, 7302855260707822541, 2381136881374877847552, 901709366369630531857417, 392234247731566637785780224, 194028806625479344354551301125
Offset: 0

Views

Author

Alois P. Heinz, Aug 07 2014

Keywords

Crossrefs

Column k=3 of A245980.

Programs

  • Maple
    with(combinat): M:=multinomial:
    b:= proc(n, k) local l, g; l, g:= [1, 3],
          proc(k, m, i, t) option remember; local d, j; d:= l[i];
            `if`(i=1, n^m, add(M(k, k-(d-t)*j, (d-t)$j)/j!*
             (d-1)!^j *M(m, m-t*j, t$j) *g(k-(d-t)*j, m-t*j,
            `if`(d-t=1, [i-1, 0], [i, t+1])[]), j=0..min(k/(d-t),
            `if`(t=0, [][], m/t))))
          end; g(k, n-k, nops(l), 0)
        end:
    a:= n-> add(b(n, j)*stirling2(n, j)*binomial(n, j)*j!, j=0..n):
    seq(a(n), n=0..20);
  • Mathematica
    multinomial[n_, k_] := n!/Times @@ (k!); M = multinomial; b[n_, k0_] := Module[{l, g}, l = {1, 3}; g[k_, m_, i_, t_] := g[k, m, i, t] = Module[{d, j}, d = l[[i]]; If[i==1, n^m, Sum[M[k, Join[{k-(d-t)*j}, Array[d-t&, j]]]/j!*(d-1)!^j *M[m, Join[{m-t*j}, Array[t&, j]]]*g[k-(d-t)*j, m-t*j, Sequence @@ If[d-t==1, {i-1, 0}, {i, t+1}]], {j, 0, Min[k/(d-t), If[t==0, Infinity, m/t]]}]]]; g[k0, n-k0, Length[l], 0]]; a[0] = 1; a[n_] := Sum[b[n, j]*StirlingS2[n, j]*Binomial[n, j]*j!, {j, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 13 2017, translated from Maple *)

Formula

a(n) = Sum_{k=0..n} C(n,k) * A048993(n,k) * k! * A245958(n,k).

A239771 Number of pairs of functions (f,g) from a size n set into itself satisfying f(x) = g(g(f(x))).

Original entry on oeis.org

1, 1, 10, 213, 8056, 465945, 37823616, 4075467781, 560230714240, 95369455852497, 19643693349548800, 4805295720474420501, 1374890520609054683136, 454286686896040037996905, 171479277693049020232695808, 73262491601904459123264721125, 35143072854722729593790081499136
Offset: 0

Views

Author

Chad Brewbaker, Mar 26 2014

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) g(n):= `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end:
    a:= n-> add(binomial(n, k)*Stirling2(n, k)*k!*
            add(binomial(n-k, i)*binomial(k, i)*i!*
            g(k-i)*n^(n-k-i), i=0..min(k, n-k)), k=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 18 2014
  • Mathematica
    g[n_] := g[n] = If[n < 2, 1, g[n-1] + (n-1)*g[n-2]];
    a[n_] := If[n == 0, 1, Sum[Binomial[n, k]*StirlingS2[n, k]*k!*Sum[ Binomial[n-k, i]*Binomial[k, i]*i!*g[k-i]*n^(n-k-i), {i, 0, Min[k, n-k]} ], {k, 0, n}]];
    a /@ Range[0, 20] (* Jean-François Alcover, Oct 03 2019, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..n} C(n,k) * A048993(n,k) * k! * A245348(n,k). - Alois P. Heinz, Jul 18 2014

Extensions

a(6)-a(7) from Giovanni Resta, Mar 28 2014
a(8)-a(16) from Alois P. Heinz, Jul 18 2014

A239750 Number of ordered pairs of endofunctions (f,g) on a set of n elements satisfying g(f(x)) = f(f(f(x))).

Original entry on oeis.org

1, 1, 6, 87, 2200, 84245, 4492656, 315937195, 28186856832, 3099006365769, 410478164588800, 64323095036300111, 11748771067445148672, 2470422069374379054493, 591735532838657160296448, 160004357420756572368889875, 48458574881000820765562863616
Offset: 0

Views

Author

Chad Brewbaker, Mar 26 2014

Keywords

Comments

As observed by Yuval Filmus, this also counts pairs (f,g) that satisfy g(f(x)) = f^{k}(x) for k >= 1. - Chad Brewbaker, Mar 27 2014

Crossrefs

Column k=1 of A245980.

Programs

  • Maple
    a:= n-> add(binomial(n, k)*k^n*(n-1)^(n-k), k=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 23 2014
  • Mathematica
    a[n_] := If[n<2, 1, Sum[Binomial[n, k]*k^n*(n-1)^(n-k), {k, 0, n}]];
    a /@ Range[0, 20] (* Jean-François Alcover, Oct 03 2019, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..n} C(n,k) * k^n * (n-1)^(n-k) = Sum_{k=0..n} C(n,k) * A048993(n,k) * k! * n^(n-k). - Alois P. Heinz, Jul 23 2014

Extensions

a(6)-a(7) from Giovanni Resta, Mar 26 2014
a(8)-a(16) from Alois P. Heinz, Jul 17 2014

A245988 Number of pairs of endofunctions f, g on [n] satisfying g^n(f(i)) = f(i) for all i in [n].

Original entry on oeis.org

1, 1, 10, 141, 9592, 159245, 86252976, 908888155, 1682479423360, 128805405787953, 93998774487116800, 1099662085349496911, 44830846497021739693056, 147548082727234113659293, 3534565745374740945151080448, 1613371163531618738559582856125
Offset: 0

Views

Author

Alois P. Heinz, Aug 08 2014

Keywords

Crossrefs

Main diagonal of A245980.
Cf. A245911.

Programs

  • Maple
    with(numtheory): with(combinat): M:=multinomial:
    a:= proc(n) option remember; local l, g; l, g:= sort([divisors(n)[]]),
          proc(k, m, i, t) option remember; local d, j; d:= l[i];
            `if`(i=1, n^m, add(M(k, k-(d-t)*j, (d-t)$j)/j!*
             (d-1)!^j *M(m, m-t*j, t$j) *g(k-(d-t)*j, m-t*j,
            `if`(d-t=1, [i-1, 0], [i, t+1])[]), j=0..min(k/(d-t),
            `if`(t=0, [][], m/t))))
          end; forget(g);
          `if`(n=0, 1, add(g(j, n-j, nops(l), 0)*
          stirling2(n, j)*binomial(n, j)*j!, j=0..n))
        end:
    seq(a(n), n=0..20);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); M = multinomial;
    b[n_, k0_, p_] := Module[{l, g}, l = Sort[Divisors[p]];
        g[k_, m_, i_, t_] := g[k, m, i, t] = Module[{d, j}, d = l[[i]];
        If[i == 1, n^m, Sum[M[k, Join[{k-(d-t)*j}, Array[(d - t) &, j]]]/j!*
        (d - 1)!^j*M[m, Join[{m - t*j}, Array[t &, j]]]*
        If[d - t == 1, g[k - (d - t)*j, m - t*j, i - 1, 0],
        g[k - (d - t)*j, m - t*j, i, t + 1]], {j, 0, Min[k/(d - t),
        If[t == 0, Infinity, m/t]]}]]]; g[k0, n - k0, Length[l], 0]];
    A[n_, k_] := If[k == 0, n^(2*n), Sum[b[n, j, k]*StirlingS2[n,j]*Binomial[n, j]*j!, {j, 0, n}]];
    A[0, ] = A[1, ] = 1;
    a[n_] := A[n, n];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 29 2022, after Alois P. Heinz in A245980 *)

Formula

a(n) = A245980(n,n).

A245981 Number of pairs of endofunctions f, g on [n] satisfying g^4(f(i)) = f(i) for all i in [n].

Original entry on oeis.org

1, 1, 10, 213, 9592, 682545, 69119136, 9284636221, 1597922254720, 344058384011553, 90769698354764800, 28762381447366581861, 10751918763610399942656, 4671451080680229243978385, 2331208959412708894563057664, 1323549917511104579568688414125
Offset: 0

Views

Author

Alois P. Heinz, Aug 08 2014

Keywords

Crossrefs

Column k=4 of A245980.

Programs

  • Maple
    with(combinat): M:=multinomial:
    b:= proc(n, k) local l, g; l, g:= [1, 2, 4],
          proc(k, m, i, t) option remember; local d, j; d:= l[i];
            `if`(i=1, n^m, add(M(k, k-(d-t)*j, (d-t)$j)/j!*
             (d-1)!^j *M(m, m-t*j, t$j) *g(k-(d-t)*j, m-t*j,
            `if`(d-t=1, [i-1, 0], [i, t+1])[]), j=0..min(k/(d-t),
            `if`(t=0, [][], m/t))))
          end; g(k, n-k, nops(l), 0)
        end:
    a:= n-> add(b(n, j)*stirling2(n, j)*binomial(n, j)*j!, j=0..n):
    seq(a(n), n=0..20);

A245982 Number of pairs of endofunctions f, g on [n] satisfying g^5(f(i)) = f(i) for all i in [n].

Original entry on oeis.org

1, 1, 6, 87, 2200, 159245, 22460976, 3841485235, 725338311552, 150719206127769, 35342379764876800, 9829163373723941951, 3429714088052022223872, 1523614487096970692512933, 823050850772773045911871488, 507838824721407879972472444875
Offset: 0

Views

Author

Alois P. Heinz, Aug 08 2014

Keywords

Crossrefs

Column k=5 of A245980.

Programs

  • Maple
    with(combinat): M:=multinomial:
    b:= proc(n, k) local l, g; l, g:= [1, 5],
          proc(k, m, i, t) option remember; local d, j; d:= l[i];
            `if`(i=1, n^m, add(M(k, k-(d-t)*j, (d-t)$j)/j!*
             (d-1)!^j *M(m, m-t*j, t$j) *g(k-(d-t)*j, m-t*j,
            `if`(d-t=1, [i-1, 0], [i, t+1])[]), j=0..min(k/(d-t),
            `if`(t=0, [][], m/t))))
          end; g(k, n-k, nops(l), 0)
        end:
    a:= n-> add(b(n, j)*stirling2(n, j)*binomial(n, j)*j!, j=0..n):
    seq(a(n), n=0..20);

A245983 Number of pairs of endofunctions f, g on [n] satisfying g^6(f(i)) = f(i) for all i in [n].

Original entry on oeis.org

1, 1, 10, 267, 12040, 826245, 86252976, 12661148311, 2428606888576, 585229569018921, 172640322717932800, 60933514918456147011, 25283156000087876668416, 12189356237264450125373869, 6769905753950075837079906304, 4297777320612236566890778059375
Offset: 0

Views

Author

Alois P. Heinz, Aug 08 2014

Keywords

Crossrefs

Column k=6 of A245980.

Programs

  • Maple
    with(combinat): M:=multinomial:
    b:= proc(n, k) local l, g; l, g:= [1, 2, 3, 6],
          proc(k, m, i, t) option remember; local d, j; d:= l[i];
            `if`(i=1, n^m, add(M(k, k-(d-t)*j, (d-t)$j)/j!*
             (d-1)!^j *M(m, m-t*j, t$j) *g(k-(d-t)*j, m-t*j,
            `if`(d-t=1, [i-1, 0], [i, t+1])[]), j=0..min(k/(d-t),
            `if`(t=0, [][], m/t))))
          end; g(k, n-k, nops(l), 0)
        end:
    a:= n->add(b(n, j)*stirling2(n, j)*binomial(n, j)*j!, j=0..n):
    seq(a(n), n=0..20);

A245984 Number of pairs of endofunctions f, g on [n] satisfying g^7(f(i)) = f(i) for all i in [n].

Original entry on oeis.org

1, 1, 6, 87, 2200, 84245, 4492656, 908888155, 357260391552, 135745499491209, 49743738690284800, 18418196210352315311, 7088670872640238205952, 2879857079508362958098653, 1254944121383140772128247808, 610054332530467361553695923875
Offset: 0

Views

Author

Alois P. Heinz, Aug 08 2014

Keywords

Crossrefs

Column k=7 of A245980.

Programs

  • Maple
    with(combinat): M:=multinomial:
    b:= proc(n, k) local l, g; l, g:= [1, 7],
          proc(k, m, i, t) option remember; local d, j; d:= l[i];
            `if`(i=1, n^m, add(M(k, k-(d-t)*j, (d-t)$j)/j!*
             (d-1)!^j *M(m, m-t*j, t$j) *g(k-(d-t)*j, m-t*j,
            `if`(d-t=1, [i-1, 0], [i, t+1])[]), j=0..min(k/(d-t),
            `if`(t=0, [][], m/t))))
          end; g(k, n-k, nops(l), 0)
        end:
    a:= n-> add(b(n, j)*stirling2(n, j)*binomial(n, j)*j!, j=0..n):
    seq(a(n), n=0..20);
Showing 1-10 of 13 results. Next