cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A245910 Number A(n,k) of pairs of endofunctions f, g on [n] satisfying f(g^k(i)) = f(i) for all i in [n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 16, 1, 1, 10, 729, 1, 1, 12, 159, 65536, 1, 1, 10, 249, 3496, 9765625, 1, 1, 12, 207, 7744, 98345, 2176782336, 1, 1, 10, 249, 6856, 326745, 3373056, 678223072849, 1, 1, 12, 159, 9184, 302345, 17773056, 136535455, 281474976710656
Offset: 0

Views

Author

Alois P. Heinz, Aug 06 2014

Keywords

Examples

			Square array A(n,k) begins:
0 :        1,     1,      1,      1,      1,      1, ...
1 :        1,     1,      1,      1,      1,      1, ...
2 :       16,    10,     12,     10,     12,     10, ...
3 :      729,   159,    249,    207,    249,    159, ...
4 :    65536,  3496,   7744,   6856,   9184,   3496, ...
5 :  9765625, 98345, 326745, 302345, 488745, 173225, ...
		

Crossrefs

Main diagonal gives A245911.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i, k) option remember; unapply(`if`(n=0 or i=1, x^n,
          expand(add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
          x^(igcd(i, k)*j)*b(n-i*j, i-1, k)(x), j=0..n/i))), x)
        end:
    A:= (n, k)-> `if`(k=0, n^(2*n), add(binomial(n-1, j-1)*n^(n-j)*
                  b(j$2, k)(n), j=0..n)):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = Function[{x}, If[n == 0 || i == 1, x^n, Expand[Sum[(i-1)!^j*multinomial[n, Join[{ n-i*j}, Array[i&, j]]]/j!*x^(GCD[i, k]*j)*b[n-i*j, i-1, k][x], {j, 0, n/i}]]]]; A[0, ] = 1; A[n, k_] := If[k == 0, n^(2n), Sum[Binomial[n-1, j-1]*n^(n-j)* b[j, j, k][n], {j, 0, n}]]; Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 04 2015, after Alois P. Heinz *)

A245988 Number of pairs of endofunctions f, g on [n] satisfying g^n(f(i)) = f(i) for all i in [n].

Original entry on oeis.org

1, 1, 10, 141, 9592, 159245, 86252976, 908888155, 1682479423360, 128805405787953, 93998774487116800, 1099662085349496911, 44830846497021739693056, 147548082727234113659293, 3534565745374740945151080448, 1613371163531618738559582856125
Offset: 0

Views

Author

Alois P. Heinz, Aug 08 2014

Keywords

Crossrefs

Main diagonal of A245980.
Cf. A245911.

Programs

  • Maple
    with(numtheory): with(combinat): M:=multinomial:
    a:= proc(n) option remember; local l, g; l, g:= sort([divisors(n)[]]),
          proc(k, m, i, t) option remember; local d, j; d:= l[i];
            `if`(i=1, n^m, add(M(k, k-(d-t)*j, (d-t)$j)/j!*
             (d-1)!^j *M(m, m-t*j, t$j) *g(k-(d-t)*j, m-t*j,
            `if`(d-t=1, [i-1, 0], [i, t+1])[]), j=0..min(k/(d-t),
            `if`(t=0, [][], m/t))))
          end; forget(g);
          `if`(n=0, 1, add(g(j, n-j, nops(l), 0)*
          stirling2(n, j)*binomial(n, j)*j!, j=0..n))
        end:
    seq(a(n), n=0..20);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); M = multinomial;
    b[n_, k0_, p_] := Module[{l, g}, l = Sort[Divisors[p]];
        g[k_, m_, i_, t_] := g[k, m, i, t] = Module[{d, j}, d = l[[i]];
        If[i == 1, n^m, Sum[M[k, Join[{k-(d-t)*j}, Array[(d - t) &, j]]]/j!*
        (d - 1)!^j*M[m, Join[{m - t*j}, Array[t &, j]]]*
        If[d - t == 1, g[k - (d - t)*j, m - t*j, i - 1, 0],
        g[k - (d - t)*j, m - t*j, i, t + 1]], {j, 0, Min[k/(d - t),
        If[t == 0, Infinity, m/t]]}]]]; g[k0, n - k0, Length[l], 0]];
    A[n_, k_] := If[k == 0, n^(2*n), Sum[b[n, j, k]*StirlingS2[n,j]*Binomial[n, j]*j!, {j, 0, n}]];
    A[0, ] = A[1, ] = 1;
    a[n_] := A[n, n];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 29 2022, after Alois P. Heinz in A245980 *)

Formula

a(n) = A245980(n,n).
Showing 1-2 of 2 results.