cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A177885 a(n) = (1-n)^(n-1).

Original entry on oeis.org

1, 1, -1, 4, -27, 256, -3125, 46656, -823543, 16777216, -387420489, 10000000000, -285311670611, 8916100448256, -302875106592253, 11112006825558016, -437893890380859375, 18446744073709551616, -827240261886336764177
Offset: 0

Views

Author

Vladimir Kruchinin, Dec 28 2010

Keywords

Comments

A signed version of A000312.
LeClair gives an approximation z(n) for the location of the n-th nontrivial zero of the Riemann zeta function on the critical line, which can be expressed in terms of the exponential generating function of this sequence A(x) = x/LambertW(x) as follows: z(n) = 1/2 + 2*Pi*exp(1)*A((n - 11/8)/exp(1))*i. For example, working to 1 decimal place, z(1) = 1/2 + 14.5*i (the first nontrivial zero is at 1/2 + 14.1*i), z(10) = 1/2 + 50.2*i (the tenth nontrivial zero is at 1/2 + 49.8*i) and z(100) = 1/2 + 236*i (the hundredth nontrivial zero is at 1/2 + 236.5*i). [Peter Bala, Jun 12 2013]

Examples

			From _Paul D. Hanna_, Aug 24 2016: (Start)
E.g.f.: A(x) = 1 + x - x^2/2! + 4*x^3/3! - 27*x^4/4! + 256*x^5/5! - 3125*x^6/6! + 46656*x^7/7! - 823543*x^8/8! +...+ (1-n)^(n-1)*x^n/n! +...
Related series.
Series_Reversion(A(x) - 1) = x + x^2/2 - x^3/6 + x^4/12 - x^5/20 + x^6/30 - x^7/42 + x^8/56 - x^9/72 + x^10/90 +...+ (-x)^n/(n*(n-1)) +... (End)
		

Crossrefs

Cf. A000312, A137452 (row sums).

Programs

  • Magma
    [(1-n)^(n-1): n in [0..30]]; // Vincenzo Librandi, May 15 2011
    
  • Mathematica
    Join[{1,1}, Table[(1-n)^(n-1), {n, 2, 20}]] (* Harvey P. Dale, Aug 10 2012 *)
    nn = 18; Range[0, nn]! CoefficientList[ Series[ Exp[ ProductLog[ x]], {x, 0, nn}], x] (* Robert G. Wilson v, Aug 23 2012 *)
  • PARI
    a(n)=(1-n)^(n-1) \\ Charles R Greathouse IV, May 15 2013
    
  • PARI
    {a(n) = my(A = 1 + serreverse( x + sum(m=2,n+2, (-x)^m/(m*(m-1)) +x^2*O(x^n)))); n!*polcoeff(A,n)}
    for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Aug 24 2016

Formula

E.g.f. satisfies A(x) = exp(x/A(x)).
E.g.f. A(x) = x/LambertW(x) = exp(LambertW(x)) = 1 + x - x^2/2! + 4*x^3/3! - 27*x^4/4! + .... - Peter Bala, Jun 12 2013
E.g.f.: 1 + Series_Reversion( (1+x)*log(1+x) ). - Paul D. Hanna, Aug 24 2016
E.g.f.: 1 + Series_Reversion( x + Sum_{n>=2} (-x)^n/(n*(n-1)) ). - Paul D. Hanna, Aug 24 2016
a(n) ~ (-1)^(n+1) * exp(-1) * n^(n-1). - Vaclav Kotesovec, Sep 22 2016
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n-1, k-1)*n^(n-k), for n >= 1 and a(0) = 1, that is, Sum_{k=0..n}*A137452(n, k), for n >= 0. - Wolfdieter Lang, Apr 11 2023

A059297 Triangle of idempotent numbers binomial(n,k)*k^(n-k), version 1.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 6, 1, 0, 4, 24, 12, 1, 0, 5, 80, 90, 20, 1, 0, 6, 240, 540, 240, 30, 1, 0, 7, 672, 2835, 2240, 525, 42, 1, 0, 8, 1792, 13608, 17920, 7000, 1008, 56, 1, 0, 9, 4608, 61236, 129024, 78750, 18144, 1764, 72, 1, 0, 10, 11520, 262440
Offset: 0

Views

Author

N. J. A. Sloane, Jan 25 2001

Keywords

Comments

T(n,k) = C(n,k)*k^(n-k) is the number of functions f from domain [n] to codomain [n+1] such that f(x)=n+1 for exactly k elements x of [n] and f(f(x))=n+1 for the remaining n-k elements x of [n]. Subsequently, row sums of T(n,k) provide the number of functions f:[n]->[n+1] such that either f(x)=n+1 or f(f(x))=n+1 for every x in [n]. We note that there are C(n,k) ways to choose the k elements mapped to n+1 and there are k^(n-k) ways to map n-k elements to a set of k elements. - Dennis P. Walsh, Sep 05 2012
Conjecture: the matrix inverse is A137452. - R. J. Mathar, Mar 12 2013
The above conjecture is correct. This triangle is the exponential Riordan array [1, x*exp(x)]. Thus the inverse array is the exponential Riordan array [ 1, W(x)], which equals A137452. - Peter Bala, Apr 08 2013

Examples

			Triangle begins:
1;
0,  1;
0,  2,   1;
0,  3,   6,    1;
0,  4,  24,   12,    1;
0,  5,  80,   90,   20,   1;
0,  6, 240,  540,  240,  30,  1;
0,  7, 672, 2835, 2240, 525, 42,  1;
Row 4. Expansion of x^4 in terms of Abel polynomials:
x^4 = -4*x+24*x*(x+2)-12*x*(x+3)^2+x*(x+4)^3.
O.g.f. for column 2: A(-2,1/x) = x^2/(1-2*x)^3 = x^2+6*x^3+24*x^4+80*x^5+....
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43 and p. 135, [3i'].

Crossrefs

There are 4 versions: A059297, A059298, A059299, A059300.
Diagonals give A001788, A036216, A040075, A050982, A002378, 3*A002417, etc.
Row sums are A000248.
Cf. A061356, A202017, A137452 (inverse array), A264428.

Programs

  • Magma
    /* As triangle */ [[Binomial(n,k)*k^(n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 22 2015
    
  • Maple
    T:= (n, k)-> binomial(n, k) *k^(n-k):
    seq(seq(T(n, k), k=0..n), n=0..12);  # Alois P. Heinz, Sep 05 2012
  • Mathematica
    nn=10;f[list_]:=Select[list,#>0&];Prepend[Map[Prepend[#,0]&,Rest[Map[f,Range[0,nn]!CoefficientList[Series[Exp[y x Exp[x]],{x,0,nn}],{x,y}]]]],{1}]//Grid  (* Geoffrey Critzer, Feb 09 2013 *)
    t[n_, k_] := Binomial[n, k]*k^(n - k); Prepend[Flatten@Table[t[n, k], {n, 10}, {k, 0, n}], 1] (* Arkadiusz Wesolowski, Mar 23 2013 *)
  • Sage
    # uses[bell_transform from A264428]
    def A059297_row(n):
        nat = [k for k in (1..n)]
        return bell_transform(n, nat)
    [A059297_row(n)  for n in range(8)] # Peter Luschny, Dec 20 2015

Formula

E.g.f.: exp(x*y*exp(y)). - Vladeta Jovovic, Nov 18 2003
Up to signs, this is the triangle of connection constants expressing the monomials x^n as a linear combination of the Abel polynomials A(k,x) := x*(x+k)^(k-1), 0 <= k <= n. O.g.f. for the k-th column: A(-k,1/x) = x^k/(1-k*x)^(k+1). Cf. A061356. Examples are given below. - Peter Bala, Oct 09 2011
The o.g.f.'s for the diagonals of this triangle are the rational functions occurring in the expansion of the compositional inverse (with respect to x) (x-t*x*exp(x))^-1 = x/(1-t) + 2*t/(1-t)^3*x^2/2! + (3*t+9*t^2)/(1-t)^5*x^3/3! + (4*t+52*t^2+64*t^3)/(1-t)^7*x^4/4! + .... For example, the o.g.f. for second subdiagonal is (3*t+9*t^2)/(1-t)^5 = 3*t + 24*t^2 + 90*t^3 + 240*t^4 + .... See the Bala link. The coefficients of the numerator polynomials are listed in A202017. - Peter Bala, Dec 08 2011
Recurrence equation: T(n+1,k+1) = Sum_{j=0..n-k} (j+1)*binomial(n,j)*T(n-j,k). - Peter Bala, Jan 13 2015
The Bell transform of [1,2,3,...]. See A264428 for the Bell transform. - Peter Luschny, Dec 20 2015

A049444 Generalized Stirling number triangle of first kind.

Original entry on oeis.org

1, -2, 1, 6, -5, 1, -24, 26, -9, 1, 120, -154, 71, -14, 1, -720, 1044, -580, 155, -20, 1, 5040, -8028, 5104, -1665, 295, -27, 1, -40320, 69264, -48860, 18424, -4025, 511, -35, 1, 362880, -663696, 509004, -214676, 54649, -8624, 826, -44, 1, -3628800, 6999840, -5753736
Offset: 0

Views

Author

Keywords

Comments

T(n, k) = ^2P_n^k in the notation of the given reference with T(0, 0) := 1. The monic row polynomials s(n,x) := Sum_{m=0..n} T(n, k)*x^k which are s(n, x) = Product_{j=0..n-1} (x-(2+j)), n >= 1 and s(0, x)=1 satisfy s(n, x+y) = Sum_{k=0..n} binomial(n, k)*s(k,x)*S1(n-k, y), with the Stirling1 polynomials S1(n, x) = Sum_{m=1..n} (A008275(n, m)*x^m) and S1(0, x)=1.
In the umbral calculus (see the S. Roman reference given in A048854) the s(n, x) polynomials are called Sheffer polynomials for (exp(2*t), exp(t)-1). This translates to the usual exponential Riordan (Sheffer) notation (1/(1+x)^2, log(1+x)).
See A143491 for the unsigned version of this array and A143494 for the inverse. - Peter Bala, Aug 25 2008
Corresponding to the generalized Stirling number triangle of second kind A137650. - Peter Luschny, Sep 18 2011
Unsigned, reversed rows (cf. A145324, A136124) are the dimensions of the cohomology of a complex manifold with a symmetric group (S_n) action. See p. 17 of the Hyde and Lagarias link. See also the Murri link for an interpretation as the Betti numbers of the moduli space M(0,n) of smooth Riemann surfaces. - Tom Copeland, Dec 09 2016
The row polynomials s(n, x) = (-1)^n*risingfactorial(2 - x, n) are related to the column sequences of the unsigned Abel triangle A137452(n, k), for k >= 2. See the formula there. - Wolfdieter Lang, Nov 21 2022

Examples

			The Triangle  begins:
n\k       0       1        2       3       4      5      6    7   8 9 ...
0:        1
1:       -2       1
2:        6      -5        1
3:      -24      26       -9       1
4:      120    -154       71     -14       1
5      -720    1044     -580     155     -20      1
6:     5040   -8028     5104   -1665     295    -27      1
7:   -40320   69264   -48860   18424   -4025    511    -35    1
8:   362880 -663696   509004 -214676   54649  -8624    826  -44
9: -3628800 6999840 -5753736 2655764 -761166 140889 -16884 1266 -54 1
...  [reformatted by _Wolfdieter Lang_, Nov 21 2022]
		

References

  • Y. Manin, Frobenius Manifolds, Quantum Cohomology and Moduli Spaces, American Math. Soc. Colloquium Publications Vol. 47, 1999. [From Tom Copeland, Jun 29 2008]
  • S. Roman, The Umbral Calculus, Academic Press, 1984 (also Dover Publications, 2005).

Crossrefs

Unsigned column sequences are A000142(n+1), A001705-A001709. Row sums (signed triangle): n!*(-1)^n, row sums (unsigned triangle): A001710(n-2). Cf. A008275 (Stirling1 triangle).

Programs

  • Haskell
    a049444 n k = a049444_tabl !! n !! k
    a049444_row n = a049444_tabl !! n
    a049444_tabl = map fst $ iterate (\(row, i) ->
       (zipWith (-) ([0] ++ row) $ map (* i) (row ++ [0]), i + 1)) ([1], 2)
    -- Reinhard Zumkeller, Mar 11 2014
  • Maple
    A049444_row := proc(n) local k,i;
    add(add(Stirling1(n, n-i), i=0..k)*x^(n-k-1),k=0..n-1);
    seq(coeff(%,x,k),k=1..n-1) end:
    seq(print(A049444_row(n)),n=1..7); # Peter Luschny, Sep 18 2011
    A049444:= (n, k)-> add((-1)^(n-j)*(n-j+1)!*binomial(n, j)*Stirling1(j, k), j=0..n):
    seq(print(seq(A049444(n, k), k=0..n)), n=0..11);  # Mélika Tebni, May 02 2022
  • Mathematica
    t[n_, i_] = Sum[(-1)^k*Binomial[n, k]*(k+1)!*StirlingS1[n-k, i], {k, 0, n-i}]; Flatten[Table[t[n, i], {n, 0, 9}, {i, 0, n}]] [[1 ;; 48]]
    (* Jean-François Alcover, Apr 29 2011, after Milan Janjic *)

Formula

T(n, k) = T(n-1, k-1) - (n+1)*T(n-1, k), n >= k >= 0; T(n, k) = 0, n < k; T(n, -1) = 0, T(0, 0) = 1.
E.g.f. for k-th column of signed triangle: ((log(1+x))^k)/(k!*(1+x)^2).
Triangle (signed) = [-2, -1, -3, -2, -4, -3, -5, -4, -6, -5, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...]; triangle (unsigned) = [2, 1, 3, 2, 4, 3, 5, 4, 6, 5, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...], where DELTA is Deléham's operator defined in A084938 (unsigned version in A143491).
E.g.f.: (1 + x)^(y-2). - Vladeta Jovovic, May 17 2004 [For row polynomials s(n, y)]
With P(n, t) = Sum_{j=0..n-2} T(n-2,j) * t^j and P(1, t) = -1 and P(0, t) = 1, then G(x, t) = -1 + exp[P(.,t)*x] = [(1+x)^t - 1 - t^2 * x] / [t(t-1)], whose compositional inverse in x about 0 is given in A074060. G(x, 0) = -log(1+x) and G(x, 1) = (1+x) log(1+x) - 2x. G(x, q^2) occurs in formulas on pages 194-196 of the Manin reference. - Tom Copeland, Feb 17 2008
If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a-j), then T(n,i) = f(n,i,2), for n=1,2,...; i=0..n. - Milan Janjic, Dec 21 2008
T(n, k) = Sum_{j=0..n} (-1)^(n-j)*(n-j+1)!*binomial(n, j)*Stirling1(j, k). - Mélika Tebni, May 02 2022
From Wolfdieter Lang, Nov 24 2022: (Start)
Recurrence for row polynomials {s(n, x)}_{n>=0}: s(0, x) = 1, s(n, x) = (x - 2)*exp(-(d/dx)) s(n-1, x), for n >= 1. This is adapted from the general Sheffer result given by S. Roman, Corollary 3.7.2., p. 50.
Recurrence for column sequence {T(n, k)}{n>=k}: T(n, n) = 1, T(n, k) = (n!/(n-k))*Sum{j=k..n-1} (1/j!)*(a(n-1-j) + k*beta(n-1-j))*T(n-1, k), for k >= 0, where alpha = repeat(-2, 2) and beta(n) = [x^n] (d/dx)log(log(x)/x) = (-1)^(n+1)*A002208(n+1)/A002209(n+1), for n >= 0. This is the adapted Boas-Buck recurrence, also given in Rainville, Theorem 50., p. 141, For the references and a comment see A046521. (End)

Extensions

Second formula corrected by Philippe Deléham, Nov 09 2008

A061356 Triangle read by rows: T(n, k) is the number of labeled trees on n nodes with maximal node degree k (0 < k < n).

Original entry on oeis.org

1, 2, 1, 9, 6, 1, 64, 48, 12, 1, 625, 500, 150, 20, 1, 7776, 6480, 2160, 360, 30, 1, 117649, 100842, 36015, 6860, 735, 42, 1, 2097152, 1835008, 688128, 143360, 17920, 1344, 56, 1, 43046721, 38263752, 14880348, 3306744, 459270, 40824, 2268, 72, 1
Offset: 2

Views

Author

Olivier Gérard, Jun 07 2001

Keywords

Comments

Essentially the coefficients of the Abel polynomials (A137452). - Peter Luschny, Jun 12 2022
This is a formula from Comtet, Theorem F, vol. I, p. 81 (French edition) used in proving Theorem D.
If we let N = n+1, binomial(N-2, k-1)*(N-1)^(N-k-1) = binomial(n-1, k-1)*n^(n-k), so this sequence with offset 1,1 also gives the number of rooted forests of k trees over [n]. - Washington Bomfim, Jan 09 2008
Let S(n,k) be the signed triangle, S(n,k) = (-1)^(n-k)T(n,k), which starts 1, -2, 1, 9, -6, 1, ..., then the inverse of S is the triangle of idempotent numbers A059298. - Peter Luschny, Mar 13 2009
With offset 1 also number of labeled multigraphs of k components, n nodes, and no cycles except one loop in each component. See link below to have a picture showing the bijection between rooted forests and multigraphs of this kind. (Note that there are no labels in the picture, but the bijection remains true if we label the nodes.) - Washington Bomfim, Sep 04 2010
With offset 1, T(n,k) is the number of forests of rooted trees on n nodes with exactly k (rooted) trees. - Geoffrey Critzer, Feb 10 2012
Also the Bell transform of the sequence (n+1)^n (A000169(n+1)) without column 0. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 21 2016
Abel polynomials A(n,x) = x*(x+n)^(n-1) satisfy d/dx A(n,x) = n*A(n-1,x+1). - Michael Somos, May 10 2024
Also, T(n,k) is the number of parking functions with k ties. - Kyle Celano, Aug 18 2025

Examples

			Triangle begins
    1;
    2,     1;
    9,     6,     1;
   64,    48,    12,    1;
  625,   500,   150,   20,    1;
 7776,  6480,  2160,  360,   30,    1;
 ...
From _Peter Bala_, Sep 21 2012: (Start)
O.g.f.'s for the diagonals begin:
1/(1-x) = 1 + x + x^2 + x^3 + ...
2*x/(1-x)^3 = 2 + 6*x + 12*x^3 + ... A002378(n+1)
(9+3*x)/(1-x)^5 = 9 + 48*x + 150*x^2 + ... 3*A004320(n+1)
The numerator polynomials are the row polynomials of A155163.
(End)
		

References

  • L. Comtet, Analyse Combinatoire, P.U.F., Paris 1970. Volume 1, p 81.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974.

Crossrefs

Variant of A137452.
First diagonal is A002378.
Row sums give A000272.
Cf. A028421, A059297, A139526 (row reverse), A155163, A202017.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0,...) as column 0 to the triangle.
    BellMatrix(n -> (n+1)^n, 12); # Peter Luschny, Jan 21 2016
  • Mathematica
    nn = 7; t = Sum[n^(n - 1)  x^n/n!, {n, 1, nn}]; f[list_] := Select[list, # > 0 &]; Map[f, Drop[Range[0, nn]! CoefficientList[Series[Exp[y t], {x, 0, nn}], {x, y}], 1]] // Flatten  (* Geoffrey Critzer, Feb 10 2012 *)
    T[n_, m_] := T[n, m] = Binomial[n, m]*Sum[m^k*T[n-m, k], {k, 1, n-m}]; T[n_, n_] = 1; Table[T[n, m], {n, 1, 9}, {m, 1, n}] // Flatten (* Jean-François Alcover, Mar 31 2015, after Vladimir Kruchinin *)
    Table[Binomial[n - 2, k - 1]*(n - 1)^(n - k - 1), {n, 2, 12}, {k, 1, n - 1}] // Flatten (* G. C. Greubel, Nov 12 2017 *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
    rows = 10;
    M = BellMatrix[(# + 1)^#&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
  • Maxima
    create_list(binomial(n,k)*(n+1)^(n-k),n,0,20,k,0,n); /* Emanuele Munarini, Apr 01 2014 */
    
  • PARI
    for(n=2,11, for(k=1,n-1, print1(binomial(n-2, k-1)*(n-1)^(n-k-1), ", "))) \\ G. C. Greubel, Nov 12 2017
  • Sage
    # uses[bell_matrix from A264428]
    # Adds (1,0,0,0,...) as column 0 to the triangle.
    bell_matrix(lambda n: (n+1)^n, 12) # Peter Luschny, Jan 21 2016
    

Formula

T(n, k) = binomial(n-2, k-1)*(n-1)^(n-k-1).
E.g.f.: (-LambertW(-y)/y)^(x+1)/(1+LambertW(-y)). - Vladeta Jovovic
From Peter Bala, Sep 21 2012: (Start)
Let T(x) = Sum_{n >= 0} n^(n-1)*x^n/n! denote the tree function of A000169. E.g.f.: F(x,t) := exp(t*T(x)) - 1 = -1 + {T(x)/x}^t = t*x + t*(2 + t)*x^2/2! + t*(9 + 6*t + t^2)*x^3/3! + ....
The compositional inverse with respect to x of (1/t)*F(x,t) is the e.g.f. for a signed version of the row reverse of A028421.
The row generating polynomials are the Abel polynomials A(n,x) = x*(x+n)^(n-1) for n >= 1.
Define B(n,x) = x^n/(1+n*x)^(n+1) = (-1)^n*A(-n,-1/x) for n >= 1. The k-th column entries are the coefficients in the formal series expansion of x^k in terms of B(n,x). For example, Col. 1: x = B(1,x) + 2*B(2,x) + 9*B(3,x) + 64*B(4,x) + ..., Col. 2: x^2 = B(2,x) + 6*B(3,x) + 48*B(4,x) + 500*B(5,x) + ... Compare with A059297.
n-th row sum = A000272(n+1).
Row reverse triangle is A139526.
The o.g.f.'s for the diagonals of the triangle are the rational functions R(n,x)/(1-x)^(2*n+1), where R(n,x) are the row polynomials of A155163. See below for examples.
(End)
T(n,m) = C(n,m)*Sum_{k=1..n-m} m^k*T(n-m,k), T(n,n) = 1. - Vladimir Kruchinin, Mar 31 2015

A354794 Triangle read by rows. The Bell transform of the sequence {m^m | m >= 0}.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 4, 3, 1, 0, 27, 19, 6, 1, 0, 256, 175, 55, 10, 1, 0, 3125, 2101, 660, 125, 15, 1, 0, 46656, 31031, 9751, 1890, 245, 21, 1, 0, 823543, 543607, 170898, 33621, 4550, 434, 28, 1, 0, 16777216, 11012415, 3463615, 688506, 95781, 9702, 714, 36, 1
Offset: 0

Views

Author

Peter Luschny, Jun 09 2022

Keywords

Comments

For the definition of the Bell transform see A264428. The Bell transform of {(-m)^m | m >= 0} is A039621. The numbers A039621(n, k) are known as the Lehmer-Comtet numbers of 2nd kind. We think it is more natural to use Bell_{n, k}({m^m}) as the basis for the definition (and let the triangle start at (0, 0)).

Examples

			Triangle T(n, k) begins:
[0] 1;
[1] 0,        1;
[2] 0,        1,        1;
[3] 0,        4,        3,       1;
[4] 0,       27,       19,       6,      1;
[5] 0,      256,      175,      55,     10,     1;
[6] 0,     3125,     2101,     660,    125,    15,    1;
[7] 0,    46656,    31031,    9751,   1890,   245,   21,   1;
[8] 0,   823543,   543607,  170898,  33621,  4550,  434,  28,  1;
[9] 0, 16777216, 11012415, 3463615, 688506, 95781, 9702, 714, 36, 1;
		

References

  • Louis Comtet, Advanced Combinatorics. Reidel, Dordrecht, 1974, p. 139-140.

Crossrefs

Cf. A264428, A039621 (signed variant), A195979 (row sums), A000312 (column 1), A045531 (column 2), A281596 (column 3), A281595 (column 4), A000217 (diagonal 1), A215862 (diagonal 2), A354795 (matrix inverse), A137452 (Abel).

Programs

  • Maple
    T := (n, k) -> if n = k then 1 else
    add((-1)^j*(n-j-1)^(n-1)/(j!*(k-1-j)!), j = 0.. k-1) fi:
    seq(seq(T(n, k), k = 0..n), n = 0..9);
    # Alternatively, using the function BellMatrix from A264428:
    BellMatrix(n -> n^n, 9);
    # Or by recursion:
    R := proc(n, k, m) option remember;
       if k < 0 or n < 0 then 0 elif k = 0 then 1 else
       m*R(n, k-1, m) + R(n-1, k, m+1) fi end:
    A039621 := (n, k) -> ifelse(n = 0, 1, R(k-1, n-k, n-k)):
  • Mathematica
    Unprotect[Power]; Power[0, 0] = 1; pow[n_] := n^n;
    R = Range[0, 9]; T[n_, k_] := BellY[n, k, pow[R]];
    Table[T[n, k], {n, R}, {k, 0, n}] // Flatten
  • Python
    from functools import cache
    @cache
    def t(n, k, m):
        if k < 0 or n < 0: return 0
        if k == 0: return n ** k
        return m * t(n, k - 1, m) + t(n - 1, k, m + 1)
    def A354794(n, k): return t(k - 1, n - k, n - k) if n != k else 1
    for n in range(9): print([A354794(n, k) for k in range(n + 1)])

Formula

T(n, k) = Bell_{n, k}(A000312), where Bell_{n, k} is the partial Bell polynomial evaluated over the powers m^m (with 0^0 = 1). See the Mathematica program.
T(n, k) = Sum_{j=0..k-1} (-1)^j*(n-j-1)^(n - 1)/(j! * (k-1-j)!) for 0 <= k < n and T(n, n) = 1.
T(n, k) = r(k-1, n-k, n-k) for n,k >= 1 and T(0, 0) = 1, where r(n, k, m) = m*r(n, k-1, m) + r(n-1, k, m+1) and r(n, 0, m) = 1. (see Vladimir Kruchinin's formula in A039621).
Sum_{k=1..n} binomial(k + x - 1, k-1)*(k-1)!*T(n, k) = (n + x)^(n - 1) for n >= 1.
Sum_{k=1..n} (-1)^(k+j)*Stirling1(k, j)*T(n, k) = n^(n-j)*binomial(n-1, j-1) for n >= 1, which are, up to sign, the coefficients of the Abel polynomials (A137452).
From Werner Schulte, Jun 14 2022 and Jun 19 2022: (Start)
E.g.f. of column k >= 0: (Sum_{i>0} (i-1)^(i-1) * t^i / i!)^k / k!.
Conjecture: T(n, k) = Sum_{i=0..n-k} A048994(n-k, i) * A048993(n+i-1, n-1) for 0 < k <= n and T(n, 0) = 0^n for n >= 0; proved by Mike Earnest, see link at A354797. (End)

A232006 Triangular array read by rows: T(n,k) is the number of simple labeled graphs on vertex set {1,2,...,n} with exactly k components (all of which are trees) such that the labels {1,2,...,k} are all in distinct components (trees), n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 16, 8, 3, 1, 0, 125, 50, 15, 4, 1, 0, 1296, 432, 108, 24, 5, 1, 0, 16807, 4802, 1029, 196, 35, 6, 1, 0, 262144, 65536, 12288, 2048, 320, 48, 7, 1, 0, 4782969, 1062882, 177147, 26244, 3645, 486, 63, 8, 1, 0, 100000000, 20000000, 3000000, 400000, 50000, 6000, 700, 80, 9, 1
Offset: 0

Views

Author

Geoffrey Critzer, Nov 16 2013

Keywords

Comments

Row sums = (n^n-n)/(n-1)^2 = A058128(n).
Column k without leading zeros is the k-th exponential (also called binomial) convolution of the sequence {A000272(n+1)} = {A232006(n+1, 1)}, for n >= 0, with e.g.f. LamberW(-x)/(-x), where LambertW is the principal branch of the Lambert W-function. This is also the row polynomial P(n, x) of the unsigned triangle A137452, evaluated at x = k. - Wolfdieter Lang, Apr 24 2023

Examples

			The triangle begins:
n\k  0         1        2       3      4     5    6   7  8 9 10 ...
0:   1
1:   0         1
2:   0         1        1
3:   0         3        2       1
4:   0        16        8       3      1
5:   0       125       50      15      4     1
6:   0      1296      432     108     24     5    1
7:   0     16807     4802    1029    196    35    6   1
8:   0    262144    65536   12288   2048   320   48   7  1
9:   0   4782969  1062882  177147  26244  3645  486  63  8 1
10:  0 100000000 20000000 3000000 400000 50000 6000 700 80 9  1
... Reformatted by _Wolfdieter Lang_, Apr 24 2023
		

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Proposition 5.3.2.

Crossrefs

Columns give A000007, A000272, A007334, A362354, A362355, A362356, ...

Programs

  • Mathematica
    Prepend[Table[Table[k n^(n-k-1),{k,0,n}],{n,1,8}],{1}]//Grid
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, n^(n-k-1))}; /* Michael Somos, May 15 2017 */

Formula

T(n, k) = k*n^(n-k-1).
T(n, k) = Sum_{i=0..n-k} T(n-1, k-1+i)*C(n-k,i), T(0, 0) = 1, T(n, 0) = 0 when n >= 1.
From Wolfdieter Lang, Apr 24 2023: (Start)
E.g.f. for {T(n+k, k)}_{n>=0} is (LambertW(-x)/(-x))^k, for k >= 0.
T(n, k) = Sum_{m=0..n-k} |A137452(n-k, m)|*k^m, for n >= 0 and k = 0..n. That is, T(n, n) = 1, for n >= 0, and T(n, k) = Sum_{m=1..n-k} binomial(n-k-1, m-1)*(n-k)^(n-k-m)*k^m, for k = 0..n-1 and n >= k+1. (End)

A202477 The number of ways to build all endofunctions on each block of every set partition of {1,2,...,n}.

Original entry on oeis.org

1, 1, 5, 40, 437, 6036, 100657, 1965160, 43937385, 1106488720, 30982333661, 954607270464, 32090625710365, 1168646120904640, 45826588690845705, 1924996299465966976, 86231288506425806033, 4103067277186778016000, 206655307175847710248885
Offset: 0

Views

Author

Geoffrey Critzer, Dec 19 2011

Keywords

Crossrefs

Cf. A000262 (the same for permutations), A137452.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(i^(i*j)*b(n-i*j, i-1)*
           multinomial(n, n-i*j, i$j)/j!, j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 29 2016
  • Mathematica
    nn = 20; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}] ;
    Range[0, nn]! CoefficientList[Series[Exp[t/(1 - t)], {x, 0, nn}], x]

Formula

E.g.f.: exp(T(x)/(1-T(x))) where T(x) is the e.g.f. for A000169.
a(n) ~ n^(n-1/3) * exp(3/2*n^(1/3) - 2/3) / sqrt(3). - Vaclav Kotesovec, Sep 24 2013
a(n) = Sum_{k=0..n} n^(n-k)*binomial(n-1,k-1)*A000262(k). - Fabian Pereyra, Jul 12 2024
The above formula can be written with the Abel polynomials: a(n) = Sum_{k=0..n} (-1)^(n - k) * A137452(n, k) * A000262(k). - Peter Luschny, Jul 13 2024

A362354 a(n) = 3*(n+3)^(n-1).

Original entry on oeis.org

1, 3, 15, 108, 1029, 12288, 177147, 3000000, 58461513, 1289945088, 31813498119, 867763964928, 25949267578125, 844424930131968, 29713734098717811, 1124440102746243072, 45543381089624394897, 1966080000000000000000, 90125827485245075684223, 4372496892684322588065792
Offset: 0

Views

Author

Wolfdieter Lang, Apr 24 2023

Keywords

Comments

This gives the third exponential (also called binomial) convolution of {A000272(n+1)} = {A232006(n+1, 1)}, for n >= 0, with e.g.f. (LambertW(-x),(-x)) (LambertW is the principal branch of the Lambert W-function).
This is also the row polynomial P(n, x) of the unsigned triangle A137452, evaluated at x = 3.

Crossrefs

Column k=3 of A232006 (without leading zeros).
Cf. A137452.

Formula

a(n) = Sum_{k=0..n} |A137452(n, k)|*3^k = Sum_{k=0..n} binomial(n-1, k-1)*n^(n-k)*3^k, with the n = 0 term equal to 1 (not 0).
E.g.f.: (LambertW(-x)/(-x))^3.
From Seiichi Manyama, Jun 19 2024: (Start)
E.g.f. A(x) satisfies:
(1) A(x) = exp(3*x*A(x)^(1/3)).
(2) A(x) = 1/A(-x*A(x)^(2/3)). (End)

A225465 Triangular array read by rows: T(n, k) is the number of rooted forests on {1, 2, ..., n} in which one tree has been specially designated that contain exactly k trees; n >= 1, 1 <= k <= n.

Original entry on oeis.org

1, 2, 2, 9, 12, 3, 64, 96, 36, 4, 625, 1000, 450, 80, 5, 7776, 12960, 6480, 1440, 150, 6, 117649, 201684, 108045, 27440, 3675, 252, 7, 2097152, 3670016, 2064384, 573440, 89600, 8064, 392, 8, 43046721, 76527504, 44641044, 13226976, 2296350, 244944, 15876, 576, 9
Offset: 1

Views

Author

Geoffrey Critzer, May 08 2013

Keywords

Comments

Row sums = 2n*(n+1)^(n-2) = A089946(offset).
The average number of trees in each forest approaches 5/2 as n gets large.
The rows give the coefficients of the derivatives of the Abel polynomials. - Peter Luschny, Feb 22 2025

Examples

			    T(2,1)=2                  T(2,2)=2
  ...1'...   ...2'...   ...1'..2...   ...1..2'...
  ...| ...   ...| ...   ...........   ...........
  ...2 ...   ...1 ...   ...........   ...........
The root node is on top.  The ' indicates the tree which has been specially designated.
Triangle starts:
  [1]        1;
  [2]        2,        2;
  [3]        9,       12,        3;
  [4]       64,       96,       36,        4;
  [5]      625,     1000,      450,       80,       5;
  [6]     7776,    12960,     6480,     1440,     150,      6;
  [7]   117649,   201684,   108045,    27440,    3675,    252,     7;
  [8]  2097152,  3670016,  2064384,   573440,   89600,   8064,   392,   8;
  [9] 43046721, 76527504, 44641044, 13226976, 2296350, 244944, 15876, 576, 9;
		

Crossrefs

Cf. A061356, A089946 (row sums), A000169, A137452.

Programs

  • Mathematica
    Table[Table[Binomial[n - 1, k - 1] n^(n - k) k, {k, 1, n}], {n, 1, 8}] // Grid

Formula

T(n, k) = binomial(n-1, k-1)*n^(n-k)*k = A061356(n, k)*k(offset).
E.g.f.: y*A(x)*exp(y*A(x)) where A(x) is e.g.f. for A000169.

A362355 a(n) = 4*(n+4)^(n-1).

Original entry on oeis.org

1, 4, 24, 196, 2048, 26244, 400000, 7086244, 143327232, 3262922884, 82644187136, 2306601562500, 70368744177664, 2330488948919044, 83291859462684672, 3196026743131536484, 131072000000000000000, 5722274760967941313284, 264999811677837732610048
Offset: 0

Views

Author

Wolfdieter Lang, Apr 24 2023

Keywords

Comments

This gives the fourth exponential (also called binomial) convolution of {A000272(n+1)} = {A232006(n+1, 1)}, for n >= 0, with e.g.f. (LambertW(-x),(-x)) (LambertW is the principal branch of the Lambert W-function).
This is also the row polynomial P(n, x) of the unsigned triangle A137452, evaluated at x = 4.

Crossrefs

Column k = 4 of A232006 (without leading zeros).

Programs

  • Mathematica
    Table[4(n+4)^(n-1),{n,0,20}] (* Harvey P. Dale, Jun 05 2024 *)

Formula

a(n) = Sum_{k=0..n} |A137452(n, k)|*4^k = Sum_{k=0..n} binomial(n-1, k-1)*n^(n-k)*4^k, with the n = 0 term equal to 1 (not 0).
E.g.f.: (LambertW(-x)/(-x))^4.
From Seiichi Manyama, Jun 19 2024: (Start)
E.g.f. A(x) satisfies:
(1) A(x) = exp(4*x*A(x)^(1/4)).
(2) A(x) = 1/A(-x*A(x)^(1/2)). (End)
Showing 1-10 of 13 results. Next