cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A354795 Triangle read by rows. The matrix inverse of A354794. Equivalently, the Bell transform of cfact(n) = -(n - 1)! if n > 0 and otherwise 1/(-n)!.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, -1, -3, 1, 0, -2, -1, -6, 1, 0, -6, 0, 5, -10, 1, 0, -24, 4, 15, 25, -15, 1, 0, -120, 28, 49, 35, 70, -21, 1, 0, -720, 188, 196, 49, 0, 154, -28, 1, 0, -5040, 1368, 944, 0, -231, -252, 294, -36, 1, 0, -40320, 11016, 5340, -820, -1365, -987, -1050, 510, -45, 1
Offset: 0

Views

Author

Peter Luschny, Jun 09 2022

Keywords

Comments

The triangle is the matrix inverse of the Bell transform of n^n (A354794).
The numbers (-1)^(n-k)*T(n, k) are known as the Lehmer-Comtet numbers of 1st kind (A008296).
The function cfact is the 'complementary factorial' (name is ad hoc) and written \hat{!} in TeX mathmode. 1/(cfact(-n) * cfact(n)) = signum(-n) * n for n != 0. It is related to the Roman factorial (A159333). The Bell transform of the factorial are the Stirling cycle numbers (A132393).

Examples

			Triangle T(n, k) begins:
[0] [1]
[1] [0,     1]
[2] [0,    -1,    1]
[3] [0,    -1,   -3,   1]
[4] [0,    -2,   -1,  -6,   1]
[5] [0,    -6,    0,   5, -10,    1]
[6] [0,   -24,    4,  15,  25,  -15,    1]
[7] [0,  -120,   28,  49,  35,   70,  -21,   1]
[8] [0,  -720,  188, 196,  49,    0,  154, -28,   1]
[9] [0, -5040, 1368, 944,   0, -231, -252, 294, -36, 1]
		

References

  • Louis Comtet, Advanced Combinatorics. Reidel, Dordrecht, 1974, p. 139-140.

Crossrefs

Cf. A354794 (matrix inverse), A176118 (row sums), A005727 (alternating row sums), A045406 (column 2), A347276 (column 3), A345651 (column 4), A298511 (central), A008296 (variant), A159333, A264428, A159075, A006963, A354796.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    cfact := n -> ifelse(n = 0, 1, -(n - 1)!): BellMatrix(cfact, 10);
    # Alternative:
    t := proc(n, k) option remember; if k < 0 or n < 0 then 0 elif k = n then 1 else (n-1)*t(n-2, k-1) - (n-1-k)*t(n-1, k) + t(n-1, k-1) fi end:
    T := (n, k) -> (-1)^(n-k)*t(n, k):
    seq(print(seq(T(n, k), k = 0..n)), n = 0..9);
    # Using the e.g.f.:
    egf := (1 - x)^(t*(x - 1)):
    ser := series(egf, x, 11): coeffx := n -> coeff(ser, x, n):
    row := n -> seq(n!*coeff(coeffx(n), t, k), k=0..n):
    seq(print(row(n)), n = 0..9);
  • Mathematica
    cfact[n_] := If[n == 0, 1, -(n - 1)!];
    R := Range[0, 10]; cf := Table[cfact[n], {n, R}];
    Table[BellY[n, k, cf], {n, R}, {k, 0, n}] // Flatten

Formula

T(n, k) = n!*[t^k][x^n] (1 - x)^(t*(x - 1)).
T(n, k) = Sum_{j=k..n} (-1)^(n-k)*binomial(j, k)*k^(j-k)*Stirling1(n, j).
T(n, k) = Bell_{n, k}(a), where Bell_{n, k} is the partial Bell polynomial evaluated over the sequence a = {cfact(m) | m >= 0}, (see Mathematica).
T(n, k) = (-1)^(n-k)*t(n, k) where t(n, n) = 1 and t(n, k) = (n-1)*t(n-2, k-1) - (n-1-k)*t(n-1, k) + t(n-1, k-1) for k > 0 and n > 0.
Let s(n) = (-1)^n*Sum_{k=1..n} (k-1)^(k-1)*T(n, k) for n >= 0, then s = A159075.
Sum_{k=1..n} (k + x)^(k-1)*T(n, k) = binomial(n + x - 1, n-1)*(n-1)! for n >= 1. Note that for x = k this is A354796(n, k) for 0 <= k <= n and implies in particular for x = n >= 1 the identity Sum_{k=1..n} (k + n)^(k - 1)*T(n, k) = Gamma(2*n)/n! = A006963(n+1).
E.g.f. of column k >= 0: ((1 - t) * log(1 - t))^k / ((-1)^k * k!). - Werner Schulte, Jun 14 2022

A359759 Table read by rows. T(n, k) = (-1)^(n - k) * Sum_{j=k..n} binomial(n, j) * A354794(j, k) * j^(n - j).

Original entry on oeis.org

1, 0, 1, 0, -3, 1, 0, 13, -9, 1, 0, -103, 79, -18, 1, 0, 1241, -905, 265, -30, 1, 0, -19691, 13771, -4290, 665, -45, 1, 0, 384805, -262885, 82621, -14630, 1400, -63, 1, 0, -8918351, 6007247, -1888362, 353381, -40390, 2618, -84, 1
Offset: 0

Views

Author

Peter Luschny, Jan 27 2023

Keywords

Comments

Inspired by a formula of Mélika Tebni in A048993.

Examples

			Triangle T(n, k) starts:
[0] 1;
[1] 0,         1;
[2] 0,        -3,          1;
[3] 0,        13,         -9,        1;
[4] 0,      -103,         79,      -18,        1;
[5] 0,      1241,       -905,      265,      -30,       1;
[6] 0,    -19691,      13771,    -4290,      665,     -45,      1;
[7] 0,    384805,    -262885,    82621,   -14630,    1400,    -63,    1;
[8] 0,  -8918351,    6007247, -1888362,   353381,  -40390,   2618,  -84,    1;
[9] 0, 238966705, -159432369, 50110705, -9627702, 1206471, -96138, 4494, -108, 1;
		

Crossrefs

Programs

  • Maple
    T := (n, k) -> (-1)^(n - k)*add(binomial(n, j) * A354794(j, k) * j^(n - j), j = k..n): for n from 0 to 9 do seq(T(n, k), k = 0..n) od;

Formula

E.g.f. of column k: (exp(LambertW(x*exp(-x))) - 1)^k / k!. (Note that (exp(-LambertW(-x*exp(-x))) - 1)^k / k! is the e.g.f. of column k of Stirling2.) - Mélika Tebni, Jan 27 2023

A048993 Triangle of Stirling numbers of 2nd kind, S(n,k), n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 7, 6, 1, 0, 1, 15, 25, 10, 1, 0, 1, 31, 90, 65, 15, 1, 0, 1, 63, 301, 350, 140, 21, 1, 0, 1, 127, 966, 1701, 1050, 266, 28, 1, 0, 1, 255, 3025, 7770, 6951, 2646, 462, 36, 1, 0, 1, 511, 9330, 34105, 42525, 22827, 5880, 750, 45, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Also known as Stirling set numbers.
S(n,k) enumerates partitions of an n-set into k nonempty subsets.
The o.g.f. for the sequence of diagonal k (k=0 for the main diagonal) is G(k,x) = ((x^k)/(1-x)^(2*k+1))*Sum_{m=0..k-1} A008517(k,m+1)*x^m. A008517 is the second-order Eulerian triangle. - Wolfdieter Lang, Oct 14 2005
From Philippe Deléham, Nov 14 2007: (Start)
Sum_{k=0..n} S(n,k)*x^k = B_n(x), where B_n(x) = Bell polynomials.
The first few Bell polynomials are:
B_0(x) = 1;
B_1(x) = 0 + x;
B_2(x) = 0 + x + x^2;
B_3(x) = 0 + x + 3x^2 + x^3;
B_4(x) = 0 + x + 7x^2 + 6x^3 + x^4;
B_5(x) = 0 + x + 15x^2 + 25x^3 + 10x^4 + x^5;
B_6(x) = 0 + x + 31x^2 + 90x^3 + 65x^4 + 15x^5 + x^6;
(End)
This is the Sheffer triangle (1, exp(x) - 1), an exponential (binomial) convolution triangle. The a-sequence is given by A006232/A006233 (Cauchy sequence). The z-sequence is the zero sequence. See the link under A006232 for the definition and use of these sequences. The row sums give A000110 (Bell), and the alternating row sums give A000587 (see the Philippe Deléham formulas and crossreferences below). - Wolfdieter Lang, Oct 16 2014
Also the inverse Bell transform of the factorial numbers (A000142). For the definition of the Bell transform see A264428 and for cross-references A265604. - Peter Luschny, Dec 31 2015
From Wolfdieter Lang, Feb 21 2017: (Start)
The transposed (trans) of this lower triagonal Sheffer matrix of the associated type S = (1, exp(x) - 1) (taken as N X N matrix for arbitrarily large N) provides the transition matrix from the basis {x^n/n!}, n >= 0, to the basis {y^n/n!}, n >= 0, with y^n/n! = Sum_{m>=n} S^{trans}(n, m) x^m/m! = Sum_{m>=0} x^m/m!*S(m, n).
The Sheffer transform with S = (g, f) of a sequence {a_n} to {b_n} for n >= 0, in matrix notation vec(b) = S vec(a), satisfies, with e.g.f.s A and B, B(x) = g(x)*A(f(x)) and B(x) = A(y(x)) identically, with vec(xhat) = S^{trans,-1} vec(yhat) in symbolic notation with vec(xhat)_n = x^n/n! (similarly for vec(yhat)).
(End)
Number of partitions of {1, 2, ..., n+1} into k+1 nonempty subsets such that no subset contains two adjacent numbers. - Thomas Anton, Sep 26 2022

Examples

			The triangle S(n,k) begins:
  n\k 0 1    2     3      4       5       6      7      8     9   10 11 12
  0:  1
  1:  0 1
  2:  0 1    1
  3:  0 1    3     1
  4:  0 1    7     6      1
  5:  0 1   15    25     10       1
  6:  0 1   31    90     65      15       1
  7:  0 1   63   301    350     140      21      1
  8:  0 1  127   966   1701    1050     266     28      1
  9:  0 1  255  3025   7770    6951    2646    462     36     1
 10:  0 1  511  9330  34105   42525   22827   5880    750    45    1
 11:  0 1 1023 28501 145750  246730  179487  63987  11880  1155   55  1
 12:  0 1 2047 86526 611501 1379400 1323652 627396 159027 22275 1705 66  1
 ... reformatted and extended - _Wolfdieter Lang_, Oct 16 2014
Completely symmetric function S(4, 2) = h^{(2)}_2 = 1^2 + 2^2 + 1^1*2^1 = 7; S(5, 2) = h^{(2)}_3 = 1^3 + 2^3 + 1^2*2^1 + 1^1*2^2 = 15. - _Wolfdieter Lang_, May 26 2017
From _Wolfdieter Lang_, Aug 11 2017: (Start)
Recurrence: S(5, 3) = S(4, 2) + 2*S(4, 3) = 7 + 3*6 = 25.
Boas-Buck recurrence for column m = 3, and n = 5: S(5, 3) = (3/2)*((5/2)*S(4, 3) + 10*Bernoulli(2)*S(3, 3)) = (3/2)*(15 + 10*(1/6)*1) = 25. (End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 310.
  • J. H. Conway and R. K. Guy, The Book of Numbers, Springer, p. 92.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 244.
  • J. Riordan, An Introduction to Combinatorial Analysis, p. 48.

Crossrefs

See especially A008277 which is the main entry for this triangle.
A000110(n) = sum(S(n, k)) k=0..n, n >= 0. Cf. A085693.
Cf. A084938, A106800 (mirror image), A138378, A213061 (mod 2).

Programs

  • Haskell
    a048993 n k = a048993_tabl !! n !! k
    a048993_row n = a048993_tabl !! n
    a048993_tabl = iterate (\row ->
       [0] ++ (zipWith (+) row $ zipWith (*) [1..] $ tail row) ++ [1]) [1]
    -- Reinhard Zumkeller, Mar 26 2012
  • Maple
    for n from 0 to 10 do seq(Stirling2(n,k),k=0..n) od; # yields sequence in triangular form # Emeric Deutsch, Nov 01 2006
  • Mathematica
    t[n_, k_] := StirlingS2[n, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Robert G. Wilson v *)
  • Maxima
    create_list(stirling2(n,k),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
    
  • PARI
    for(n=0, 22, for(k=0, n, print1(stirling(n, k, 2), ", ")); print()); \\ Joerg Arndt, Apr 21 2013
    

Formula

S(n, k) = k*S(n-1, k) + S(n-1, k-1), n > 0; S(0, k) = 0, k > 0; S(0, 0) = 1.
Equals [0, 1, 0, 2, 0, 3, 0, 4, 0, 5, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] where DELTA is Deléham's operator defined in A084938.
Sum_{k = 0..n} x^k*S(n, k) = A213170(n), A000587(n), A000007(n), A000110(n), A001861(n), A027710(n), A078944(n), A144180(n), A144223(n), A144263(n) respectively for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7. - Philippe Deléham, May 09 2004, Feb 16 2013
S(n, k) = Sum_{i=0..k} (-1)^(k+i)binomial(k, i)i^n/k!. - Paul Barry, Aug 05 2004
Sum_{k=0..n} k*S(n,k) = B(n+1)-B(n), where B(q) are the Bell numbers (A000110). - Emeric Deutsch, Nov 01 2006
Equals the inverse binomial transform of A008277. - Gary W. Adamson, Jan 29 2008
G.f.: 1/(1-xy/(1-x/(1-xy/(1-2x/(1-xy/1-3x/(1-xy/(1-4x/(1-xy/(1-5x/(1-... (continued fraction equivalent to Deléham DELTA construction). - Paul Barry, Dec 06 2009
G.f.: 1/Q(0), where Q(k) = 1 - (y+k)*x - (k+1)*y*x^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 09 2013
Inverse of padded A008275 (padded just as A048993 = padded A008277). - Tom Copeland, Apr 25 2014
E.g.f. for the row polynomials s(n,x) = Sum_{k=0..n} S(n,k)*x^k is exp(x*(exp(z)-1)) (Sheffer property). E.g.f. for the k-th column sequence with k leading zeros is ((exp(x)-1)^k)/k! (Sheffer property). - Wolfdieter Lang, Oct 16 2014
G.f. for column k: x^k/Product_{j=1..k} (1-j*x), k >= 0 (with the empty product for k = 0 put to 1). See Abramowitz-Stegun, p. 824, 24.1.4 B. - Wolfdieter Lang, May 26 2017
Boas-Buck recurrence for column sequence m: S(n, k) = (k/(n - k))*(n*S(n-1, k)/2 + Sum_{p=k..n-2} (-1)^(n-p)*binomial(n,p)*Bernoulli(n-p)*S(p, k)), for n > k >= 0, with input T(k,k) = 1. See a comment and references in A282629. An example is given below. - Wolfdieter Lang, Aug 11 2017
The n-th row polynomial has the form x o x o ... o x (n factors), where o denotes the white diamond multiplication operator defined in Bala - see Example E4. - Peter Bala, Jan 07 2018
Sum_{k=1..n} k*S(n,k) = A138378(n). - Alois P. Heinz, Jan 07 2022
S(n,k) = Sum_{j=k..n} (-1)^(j-k)*A059297(n,j)*A354794(j,k). - Mélika Tebni, Jan 27 2023

A039621 Triangle of Lehmer-Comtet numbers of 2nd kind.

Original entry on oeis.org

1, -1, 1, 4, -3, 1, -27, 19, -6, 1, 256, -175, 55, -10, 1, -3125, 2101, -660, 125, -15, 1, 46656, -31031, 9751, -1890, 245, -21, 1, -823543, 543607, -170898, 33621, -4550, 434, -28, 1, 16777216, -11012415, 3463615, -688506, 95781, -9702, 714, -36, 1
Offset: 1

Views

Author

Keywords

Comments

Also the Bell transform of (-n)^n adding 1,0,0,0,... as column 0. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 16 2016

Examples

			The triangle T(n, k) begins:
[1]       1;
[2]      -1,      1;
[3]       4,     -3,       1;
[4]     -27,     19,      -6,     1;
[5]     256,   -175,      55,   -10,     1;
[6]   -3125,   2101,    -660,   125,   -15,   1;
[7]   46656, -31031,    9751, -1890,   245, -21,   1;
[8] -823543, 543607, -170898, 33621, -4550, 434, -28, 1;
		

Crossrefs

A008296 (matrix inverse), A354794 (variant), A045531 (column |a(n, 2)|).
Cf. A185164.

Programs

  • Maple
    R := proc(n, k, m) option remember;
       if k < 0  or n < 0 then 0 elif k = 0 then 1 else
       m*R(n, k-1, m) + R(n-1, k, m+1) fi end:
    A039621 := (n, k) -> (-1)^(n-k)*R(k-1, n-k, n-k):
    seq(seq(A039621(n, k), k = 1..n), n = 1..9); # Peter Luschny, Jun 10 2022 after Vladimir Kruchinin
  • Mathematica
    a[1, 1] = 1; a[n_, k_] := 1/(k-1)! Sum[((-1)^(n-k-i)*Binomial[k-1, i]*(n-i-1)^(n-1)), {i, 0, k-1}];
    Table[a[n, k], {n, 1, 10}, {k, 1, n}]//Flatten (* Jean-François Alcover, Jun 03 2019 *)
  • Maxima
    T(n,k,m):=if k<0 or n<0 then 0 else if k=0 then 1 else m*T(n,k-1,m)+T(n-1,k,m+1);
    a(n,k):=if nVladimir Kruchinin, Mar 07 2020
  • PARI
    tabl(nn) = {for (n = 1, nn, for (k = 1, n, print1(sum(i = 0, k-1,(-1)^(n-k-i)*binomial(k-1, i)*(n-i-1)^(n-1))/(k-1)!, ", ");); print(););} \\ Michel Marcus, Aug 28 2013
    
  • Sage
    # uses[bell_matrix from A264428]
    # Adds 1,0,0,0,... as column 0 at the left side of the triangle.
    bell_matrix(lambda n: (-n)^n, 7) # Peter Luschny, Jan 16 2016
    

Formula

(k-1)!*a(n, k) = Sum_{i=0..k-1}((-1)^(n-k-i)*binomial(k-1, i)*(n-i-1)^(n-1)).
a(n,k) = (-1)^(n-k)*T(k,n-k,n-k), n>=k, where T(n,k,m)=m*T(n,m-1,k)+T(n-1,k,m+1), T(n,0,m)=1. - Vladimir Kruchinin, Mar 07 2020

A105819 Triangle of the numbers of different forests of m rooted trees of smallest order 2, i.e., without isolated vertices, on N labeled nodes.

Original entry on oeis.org

0, 2, 0, 9, 0, 0, 64, 12, 0, 0, 625, 180, 0, 0, 0, 7776, 2730, 120, 0, 0, 0, 117649, 46410, 3780, 0, 0, 0, 0, 2097152, 893816, 99120, 1680, 0, 0, 0, 0, 43046721, 19389384, 2600640, 90720, 0, 0, 0, 0, 0, 1000000000, 469532790, 71734320, 3654000, 30240, 0
Offset: 1

Views

Author

Washington Bomfim, Apr 21 2005

Keywords

Comments

Forests of order N with m components, m > floor(N/2) must contain an isolated vertex since it is impossible to partition N vertices in floor(N/2) + 1 or more trees without giving only one vertex to a tree.
Also the Bell transform of A055860. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016

Examples

			a(8) = 12 because 4 vertices can be partitioned in two trees only in one way: both trees receiving 2 vertices. Two trees on 2 vertices can be labeled in binomial(4,2) ways and to each one of the 2*binomial(4,2) = 12 possibilities there are more 2 possible trees of order 2 in a forest. But since we have 2 trees of the same order, i.e., 2, we must divide 2*binomial(4,2)*2 by 2!.
Triangle T(n,k) begins:
:       0;
:       2,      0;
:       9,      0,     0;
:      64,     12,     0,    0;
:     625,    180,     0,    0, 0;
:    7776,   2730,   120,    0, 0, 0;
:  117649,  46410,  3780,    0, 0, 0, 0;
: 2097152, 893816, 99120, 1680, 0, 0, 0, 0;
		

Crossrefs

Row sums give A105785.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> `if`(n=0,0,(n+1)^n), 9); # Peter Luschny, Jan 27 2016
    # second Maple program:
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(
           binomial(n-1, j-1)*j^(j-1)*x*b(n-j), j=2..n)))
        end:
    T:= (n, k)-> coeff(b(n), x, k):
    seq(seq(T(n, k), k=1..n), n=1..12);  # Alois P. Heinz, Aug 13 2017
  • Mathematica
    BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 12;
    B = BellMatrix[Function[n, If[n == 0, 0, (n+1)^n]], rows];
    Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)

Formula

a(n)= 0, if m > floor(N/2) (see comments), or can be calculated by the sum Num/D over the partitions of N: 1K1 + 2K2 + ... + nKN, with exactly m parts and smallest part = 2, where Num = N!*Product_{i=1..N}i^((i-1)Ki) and D = Product_{i=1..N}(Ki!(i!)^Ki).
From Mélika Tebni, Apr 23 2023: (Start)
E.g.f. of column k: (-x - LambertW(-x))^k / k!, k > 0.
Sum_{k=1..n} (-1)^(n-k)*T(n+k,k) = n+1.
Sum_{k=1..n} (-1)^(k+1)*T(n,k) = A360193(n), for n > 0.
Sum_{k=1..n} (-1)^(k+1)*T(n+k,k)/(n+k-1) = 1/n, for n > 1.
T(n,k) = Sum_{j=k..n} j!*abs(Stirling1(j-k,k))*A354794(n,j)/(j-k)!. (End)

A355282 Triangle read by rows: T(n, k) = Sum_{i=1..n-k} qStirling1(n-k, i) * qStirling2(n-1+i, n-1) for 0 < k < n with initial values T(n, 0) = 0^n and T(n, n) = 1 for n >= 0, here q = 2.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 9, 4, 1, 0, 343, 79, 11, 1, 0, 50625, 6028, 454, 26, 1, 0, 28629151, 1741861, 68710, 2190, 57, 1, 0, 62523502209, 1926124954, 38986831, 656500, 9687, 120, 1, 0, 532875860165503, 8264638742599, 84816722571, 734873171, 5760757, 40929, 247, 1
Offset: 0

Views

Author

Werner Schulte, Jun 26 2022

Keywords

Comments

We aim at a q-generalization of the Comtet-Lehmer numbers A354794, which are the case q = 1. Here we consider the case q = 2. The generalization is based on the qStirling numbers, for qStirling1 see A342186 and for qStirling2 see A139382. The general construction is as follows:
Let q <> 1 be a fixed integer and f_q(k) = (q^k - 1)/(q - 1) for k >= 0. Define triangle M(q; n, k) for 0 <= k <= n by M(q; n, 0) = 0^n for n >= 0, and M(q; n, k) = 0 for k > n, and M(q; n, k) = M(q; n-1, k-1) + M(q; n-1, k) * f_q(k) for 0 < k <= n. Then M(q; n, n) = 1 for n >= 0 and the matrix inverse I_q = M_q^(-1) exists. Next define the triangle T(q; n, k) for 0 <= k <= n by T(q; n, 0) = 0^n for n >= 0 and T(q; n, k) = Sum_{i=0..n-k} I(q; n-k, i) * M(q; n-1+i, n-1) for 0 < k <= n. Take account of lim_{q->1} (q^n - 1)/(q - 1) = n for n >= 0.
Conjecture: T(q; n+1, 1) = Sum_{i=0..n} I(q; n, i) * M(q; n+i, n) = (f_q(n))^n = ((q^n - 1)/(q - 1))^n for n >= 0.
Conjecture: T(q; n, k) = (Sum_{i=0..n-k} (-1)^i * q-binomial(n-1-i, k-1) * binomial(n-1, i) * q^((n-k)*(n-k-i))) / (q - 1)^(n-k) for 0 < k <= n.

Examples

			Triangle T(n, k) for 0 <= k <= n starts:
n\k : 0               1             2           3         4       5     6   7 8
===============================================================================
  0 : 1
  1 : 0               1
  2 : 0               1             1
  3 : 0               9             4           1
  4 : 0             343            79          11         1
  5 : 0           50625          6028         454        26       1
  6 : 0        28629151       1741861       68710      2190      57     1
  7 : 0     62523502209    1926124954    38986831    656500    9687   120   1
  8 : 0 532875860165503 8264638742599 84816722571 734873171 5760757 40929 247 1
  etc.
		

Crossrefs

Cf. A022166, A139382, A342186, A354794, A055601 (column 1), A125128 (1st subdiagonal).

Programs

  • Maple
    # using qStirling2 from A333143.
    A355282 := proc(n, k) if k = 0 then 0^n elif n = k then 1 else
    add(A342186(n - k, i)*qStirling2(n + i - 2, n - 2, 2), i = 1..n-k) fi end:
    seq(print(seq(A355282(n, k), k = 0..n)), n = 0..8); # Peter Luschny, Jun 28 2022
  • PARI
    mat(nn) = my(m = matrix(nn, nn)); for (n=1, nn, for(k=1, nn, m[n, k] = if (n==1, if (k==1, 1, 0), if (k==1, 1, (2^k-1)*m[n-1, k] + m[n-1, k-1])); ); ); m; \\ A139382
    tabl(nn) = my(m=mat(3*nn), im=1/m); matrix(nn, nn, n, k, n--; k--; if (k==0, 0^n, kMichel Marcus, Jun 27 2022

Formula

Conjecture: T(n+1, 1) = (2^n - 1)^n for n >= 0.
Conjecture: T(n, k) = Sum_{i=0..n-k} (-1)^i * binomial(n-1, i) * [n-1-i, k-1]_2 * 2^((n-k)*(n-k-i)) for 0 < k <= n and T(n, 0) = 0^n for n >= 0, where [x, y]_2 = A022166(x, y).

A360657 Number triangle T associated with 2-Stirling numbers and Lehmer-Comtet numbers (see Comments and Formula section).

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 9, 5, 1, 0, 64, 37, 9, 1, 0, 625, 369, 97, 14, 1, 0, 7776, 4651, 1275, 205, 20, 1, 0, 117649, 70993, 19981, 3410, 380, 27, 1, 0, 2097152, 1273609, 365001, 64701, 7770, 644, 35, 1, 0, 43046721, 26269505, 7628545, 1388310, 174951, 15834, 1022, 44, 1
Offset: 0

Views

Author

Werner Schulte, Feb 15 2023

Keywords

Comments

Triangle T is created using 2-Stirling numbers of the first (A049444) and the second (A143494) kind. The unusual construction is as follows:
Define A(n, k) by recurrence A(n, k) = A(n-1, k-1) + (k+1) * A(n-1, k) for 0 < k < n with initial values A(n, n) = 1, n >= 0, and A(n, 0) = 0, n > 0. A without column k = 0 is A143494. Let B = A^(-1) matrix inverse of A. B without column k = 0 is A049444. Now define T(m, k) = Sum_{i=0..m-k} B(m-k, i) * A(m-1+i, m-1) for 0 < k <= m = n/2 and T(m, 0) = 0^m for 0 <= m = n/2; T(i, j) = 0 if i < j or j < 0.
Matrix inverse of T is A360753. - Werner Schulte, Feb 21 2023
Conjecture: the transpose of this array is the upper triangular matrix U in the LU factorization of the array of Stirling numbers of the second kind read as a square array; the corresponding lower triangular array L is the triangle of Stirling numbers of the second kind. See the example section below. - Peter Bala, Oct 10 2023

Examples

			Triangle T(n, k), 0 <= k <= n, starts:
n\k :  0         1         2        3        4       5      6     7   8  9
==========================================================================
  0 :  1
  1 :  0         1
  2 :  0         2         1
  3 :  0         9         5        1
  4 :  0        64        37        9        1
  5 :  0       625       369       97       14       1
  6 :  0      7776      4651     1275      205      20      1
  7 :  0    117649     70993    19981     3410     380     27     1
  8 :  0   2097152   1273609   365001    64701    7770    644    35   1
  9 :  0  43046721  26269505  7628545  1388310  174951  15834  1022  44  1
  etc.
From _Peter Bala_, Oct 10 2023: (Start)
LU factorization of the square array of Stirling numbers of the second kind (apply Xu, Lemma 2.2):
 / 1               \ / 1   1   1   1  ...\    / 1   1   1    1  ... \
 | 1   1           ||      2   5   9  ...|   |  1   3   6   10  ... |
 | 1   3   1       ||          9  37  ...| = |  1   7  25   65  ... |
 | 1   7   6   1   ||             64  ...|   |  1  15  90  350  ... |
 | ...             ||                 ...|   |  ...                 |
(End)
		

Crossrefs

Cf. A000007 (column 0), A000169 (column 1), A055869 (column 2).
Cf. A000012 (main diagonal), A000096 (1st subdiagonal), A360753 (matrix inverse).

Programs

  • PARI
    tabl(m) = {my(n=2*m, A = matid(n), B, T); for( i = 2, n, for( j = 2, i, A[i, j] = A[i-1, j-1] + j * A[i-1, j] ) ); B = A^(-1); T = matrix( m, m, i, j, if( j == 1, 0^(i-1), sum( r = 0, i-j, B[i-j+1, r+1] * A[i-1+r, i-1] ) ) ); }

Formula

For the definition of triangle T see Comments section.
Conjectured formulas:
1. T(n, k) = (Sum_{i=k..n} A354794(n, i) * (i-1)!) / (k-1)! for 0 < k <= n.
2. T(n, k) - k * T(n, k+1) = A354794(n, k) for 0 <= k <= n.
3. T(n, 1) = A000169(n) = n^(n-1) for n > 0.
4. T(n, 2) = A055869(n-1) = n^(n-1) - (n-1)^(n-1) for n > 1.
5. T(n, k) = (Sum_{i=0..k-1} (-1)^i * binomial(k-1, i) * (n-i)^(n-1)) / (k-1)! for 0 < k <= n.
6. Sum_{i=1..n} (-1)^(n-i) * binomial(n-1+k, i-1) * T(n, i) * (i-1)! = (k-1)^(n-1) for n > 0 and k >= 0.
7. Matrix product of A354795 and T without column 0 equals A094587.
8. Matrix product of T and A354795 without column 0 equals A088956.
9. E.g.f. of column k > 0: Sum_{n>=k} T(n, k) * t^(n-1) / (n-1)! = (W(-t)/(-t)) * (Sum_{n>=k} A354794(n, k) * t^(n-1) / (n-1)!) where W is the Lambert_W-function.

A360753 Matrix inverse of A360657.

Original entry on oeis.org

1, 0, 1, 0, -2, 1, 0, 1, -5, 1, 0, 1, 8, -9, 1, 0, 2, 4, 29, -14, 1, 0, 6, 4, -10, 75, -20, 1, 0, 24, 4, -41, -115, 160, -27, 1, 0, 120, -8, -147, -196, -490, 301, -35, 1, 0, 720, -136, -624, -392, -231, -1484, 518, -44, 1
Offset: 0

Views

Author

Werner Schulte, Feb 21 2023

Keywords

Examples

			Triangle T(n, k) for 0 <= k <= n starts:
n\k :  0    1     2     3     4     5      6    7    8  9
=========================================================
  0 :  1
  1 :  0    1
  2 :  0   -2     1
  3 :  0    1    -5     1
  4 :  0    1     8    -9     1
  5 :  0    2     4    29   -14     1
  6 :  0    6     4   -10    75   -20      1
  7 :  0   24     4   -41  -115   160    -27    1
  8 :  0  120    -8  -147  -196  -490    301  -35    1
  9 :  0  720  -136  -624  -392  -231  -1484  518  -44  1
  etc.
		

Crossrefs

Cf. A132013, A215534, A354794, A354795, A360657 (matrix inverse).

Programs

  • PARI
    tabl(m) = {my(n=2*m, A = matid(n), B, C, T); for( i = 2, n, for( j = 2, i, A[i, j] = A[i-1, j-1] + j * A[i-1, j] ) ); B = A^(-1); C = matrix( m, m, i, j, if( j == 1, 0^(i-1), sum( r = 0, i-j, B[i-j+1, r+1] * A[i-1+r, i-1] ) ) ); T = 1/C; }

Formula

Conjectured formulas:
1. Matrix product of A354794 and T without column 0 equals A215534.
2. Matrix product of T and A354794 without column 0 equals A132013.
3. E.g.f. of column k > 0: Sum_{n >= k} T(n, k) * t^(n-1) / (n-1)! = (1 - t) * (Sum_{n >= k} A354795(n, k) * t^(n-1) / (n-1)!).
Showing 1-8 of 8 results.