A354795
Triangle read by rows. The matrix inverse of A354794. Equivalently, the Bell transform of cfact(n) = -(n - 1)! if n > 0 and otherwise 1/(-n)!.
Original entry on oeis.org
1, 0, 1, 0, -1, 1, 0, -1, -3, 1, 0, -2, -1, -6, 1, 0, -6, 0, 5, -10, 1, 0, -24, 4, 15, 25, -15, 1, 0, -120, 28, 49, 35, 70, -21, 1, 0, -720, 188, 196, 49, 0, 154, -28, 1, 0, -5040, 1368, 944, 0, -231, -252, 294, -36, 1, 0, -40320, 11016, 5340, -820, -1365, -987, -1050, 510, -45, 1
Offset: 0
Triangle T(n, k) begins:
[0] [1]
[1] [0, 1]
[2] [0, -1, 1]
[3] [0, -1, -3, 1]
[4] [0, -2, -1, -6, 1]
[5] [0, -6, 0, 5, -10, 1]
[6] [0, -24, 4, 15, 25, -15, 1]
[7] [0, -120, 28, 49, 35, 70, -21, 1]
[8] [0, -720, 188, 196, 49, 0, 154, -28, 1]
[9] [0, -5040, 1368, 944, 0, -231, -252, 294, -36, 1]
- Louis Comtet, Advanced Combinatorics. Reidel, Dordrecht, 1974, p. 139-140.
Cf.
A354794 (matrix inverse),
A176118 (row sums),
A005727 (alternating row sums),
A045406 (column 2),
A347276 (column 3),
A345651 (column 4),
A298511 (central),
A008296 (variant),
A159333,
A264428,
A159075,
A006963,
A354796.
-
# The function BellMatrix is defined in A264428.
cfact := n -> ifelse(n = 0, 1, -(n - 1)!): BellMatrix(cfact, 10);
# Alternative:
t := proc(n, k) option remember; if k < 0 or n < 0 then 0 elif k = n then 1 else (n-1)*t(n-2, k-1) - (n-1-k)*t(n-1, k) + t(n-1, k-1) fi end:
T := (n, k) -> (-1)^(n-k)*t(n, k):
seq(print(seq(T(n, k), k = 0..n)), n = 0..9);
# Using the e.g.f.:
egf := (1 - x)^(t*(x - 1)):
ser := series(egf, x, 11): coeffx := n -> coeff(ser, x, n):
row := n -> seq(n!*coeff(coeffx(n), t, k), k=0..n):
seq(print(row(n)), n = 0..9);
-
cfact[n_] := If[n == 0, 1, -(n - 1)!];
R := Range[0, 10]; cf := Table[cfact[n], {n, R}];
Table[BellY[n, k, cf], {n, R}, {k, 0, n}] // Flatten
A359759
Table read by rows. T(n, k) = (-1)^(n - k) * Sum_{j=k..n} binomial(n, j) * A354794(j, k) * j^(n - j).
Original entry on oeis.org
1, 0, 1, 0, -3, 1, 0, 13, -9, 1, 0, -103, 79, -18, 1, 0, 1241, -905, 265, -30, 1, 0, -19691, 13771, -4290, 665, -45, 1, 0, 384805, -262885, 82621, -14630, 1400, -63, 1, 0, -8918351, 6007247, -1888362, 353381, -40390, 2618, -84, 1
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 0, 1;
[2] 0, -3, 1;
[3] 0, 13, -9, 1;
[4] 0, -103, 79, -18, 1;
[5] 0, 1241, -905, 265, -30, 1;
[6] 0, -19691, 13771, -4290, 665, -45, 1;
[7] 0, 384805, -262885, 82621, -14630, 1400, -63, 1;
[8] 0, -8918351, 6007247, -1888362, 353381, -40390, 2618, -84, 1;
[9] 0, 238966705, -159432369, 50110705, -9627702, 1206471, -96138, 4494, -108, 1;
-
T := (n, k) -> (-1)^(n - k)*add(binomial(n, j) * A354794(j, k) * j^(n - j), j = k..n): for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
A048993
Triangle of Stirling numbers of 2nd kind, S(n,k), n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 7, 6, 1, 0, 1, 15, 25, 10, 1, 0, 1, 31, 90, 65, 15, 1, 0, 1, 63, 301, 350, 140, 21, 1, 0, 1, 127, 966, 1701, 1050, 266, 28, 1, 0, 1, 255, 3025, 7770, 6951, 2646, 462, 36, 1, 0, 1, 511, 9330, 34105, 42525, 22827, 5880, 750, 45, 1
Offset: 0
The triangle S(n,k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 11 12
0: 1
1: 0 1
2: 0 1 1
3: 0 1 3 1
4: 0 1 7 6 1
5: 0 1 15 25 10 1
6: 0 1 31 90 65 15 1
7: 0 1 63 301 350 140 21 1
8: 0 1 127 966 1701 1050 266 28 1
9: 0 1 255 3025 7770 6951 2646 462 36 1
10: 0 1 511 9330 34105 42525 22827 5880 750 45 1
11: 0 1 1023 28501 145750 246730 179487 63987 11880 1155 55 1
12: 0 1 2047 86526 611501 1379400 1323652 627396 159027 22275 1705 66 1
... reformatted and extended - _Wolfdieter Lang_, Oct 16 2014
Completely symmetric function S(4, 2) = h^{(2)}_2 = 1^2 + 2^2 + 1^1*2^1 = 7; S(5, 2) = h^{(2)}_3 = 1^3 + 2^3 + 1^2*2^1 + 1^1*2^2 = 15. - _Wolfdieter Lang_, May 26 2017
From _Wolfdieter Lang_, Aug 11 2017: (Start)
Recurrence: S(5, 3) = S(4, 2) + 2*S(4, 3) = 7 + 3*6 = 25.
Boas-Buck recurrence for column m = 3, and n = 5: S(5, 3) = (3/2)*((5/2)*S(4, 3) + 10*Bernoulli(2)*S(3, 3)) = (3/2)*(15 + 10*(1/6)*1) = 25. (End)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 310.
- J. H. Conway and R. K. Guy, The Book of Numbers, Springer, p. 92.
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 244.
- J. Riordan, An Introduction to Combinatorial Analysis, p. 48.
- David W. Wilson, Table of n, a(n) for n = 0..10010
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- V. E. Adler, Set partitions and integrable hierarchies, arXiv:1510.02900 [nlin.SI], 2015.
- Peter Bala, The white diamond product of power series
- Paul Barry, Generalized Stirling Numbers, Exponential Riordan Arrays, and Toda Chain Equations, Journal of Integer Sequences, 17 (2014), #14.2.3.
- Paul Barry, Constructing Exponential Riordan Arrays from Their A and Z Sequences, Journal of Integer Sequences, 17 (2014), #14.2.6.
- Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
- Xi Chen, Bishal Deb, Alexander Dyachenko, Tomack Gilmore, and Alan D. Sokal, Coefficientwise total positivity of some matrices defined by linear recurrences, arXiv:2012.03629 [math.CO], 2020.
- R. M. Dickau, Stirling numbers of the second kind
- Gerard Duchamp, Karol A. Penson, Allan I. Solomon, Andrej Horzela, and Pawel Blasiak, One-parameter groups and combinatorial physics, arXiv:quant-ph/0401126, 2004.
- FindStat - Combinatorial Statistic Finder, The number of blocks in the set partition.
- Bill Gosper, Colored illustrations of triangle of Stirling numbers of second kind read mod 2, 3, 4, 5, 6, 7
- W. Steven Gray and Makhin Thitsa, System Interconnections and Combinatorial Integer Sequences, in: System Theory (SSST), 2013 45th Southeastern Symposium on, Date of Conference: 11-11 March 2013, Digital Object Identifier: 10.1109/SSST.2013.6524939.
- Aoife Hennessy and Paul Barry, Generalized Stirling Numbers, Exponential Riordan Arrays, and Orthogonal Polynomials, J. Int. Seq. 14 (2011) # 11.8.2.
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See pp. 8-9.
- Mathias Pétréolle and Alan D. Sokal, Lattice paths and branched continued fractions. II. Multivariate Lah polynomials and Lah symmetric functions, arXiv:1907.02645 [math.CO], 2019.
- Claus Michael Ringel, The Catalan combinatorics of the hereditary artin algebras, arXiv preprint arXiv:1502.06553 [math.RT], 2015.
- X.-T. Su, D.-Y. Yang, and W.-W. Zhang, A note on the generalized factorial, Australasian Journal of Combinatorics, Volume 56 (2013), Pages 133-137.
See especially
A008277 which is the main entry for this triangle.
-
a048993 n k = a048993_tabl !! n !! k
a048993_row n = a048993_tabl !! n
a048993_tabl = iterate (\row ->
[0] ++ (zipWith (+) row $ zipWith (*) [1..] $ tail row) ++ [1]) [1]
-- Reinhard Zumkeller, Mar 26 2012
-
for n from 0 to 10 do seq(Stirling2(n,k),k=0..n) od; # yields sequence in triangular form # Emeric Deutsch, Nov 01 2006
-
t[n_, k_] := StirlingS2[n, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Robert G. Wilson v *)
-
create_list(stirling2(n,k),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
-
for(n=0, 22, for(k=0, n, print1(stirling(n, k, 2), ", ")); print()); \\ Joerg Arndt, Apr 21 2013
A039621
Triangle of Lehmer-Comtet numbers of 2nd kind.
Original entry on oeis.org
1, -1, 1, 4, -3, 1, -27, 19, -6, 1, 256, -175, 55, -10, 1, -3125, 2101, -660, 125, -15, 1, 46656, -31031, 9751, -1890, 245, -21, 1, -823543, 543607, -170898, 33621, -4550, 434, -28, 1, 16777216, -11012415, 3463615, -688506, 95781, -9702, 714, -36, 1
Offset: 1
The triangle T(n, k) begins:
[1] 1;
[2] -1, 1;
[3] 4, -3, 1;
[4] -27, 19, -6, 1;
[5] 256, -175, 55, -10, 1;
[6] -3125, 2101, -660, 125, -15, 1;
[7] 46656, -31031, 9751, -1890, 245, -21, 1;
[8] -823543, 543607, -170898, 33621, -4550, 434, -28, 1;
-
R := proc(n, k, m) option remember;
if k < 0 or n < 0 then 0 elif k = 0 then 1 else
m*R(n, k-1, m) + R(n-1, k, m+1) fi end:
A039621 := (n, k) -> (-1)^(n-k)*R(k-1, n-k, n-k):
seq(seq(A039621(n, k), k = 1..n), n = 1..9); # Peter Luschny, Jun 10 2022 after Vladimir Kruchinin
-
a[1, 1] = 1; a[n_, k_] := 1/(k-1)! Sum[((-1)^(n-k-i)*Binomial[k-1, i]*(n-i-1)^(n-1)), {i, 0, k-1}];
Table[a[n, k], {n, 1, 10}, {k, 1, n}]//Flatten (* Jean-François Alcover, Jun 03 2019 *)
-
T(n,k,m):=if k<0 or n<0 then 0 else if k=0 then 1 else m*T(n,k-1,m)+T(n-1,k,m+1);
a(n,k):=if nVladimir Kruchinin, Mar 07 2020
-
tabl(nn) = {for (n = 1, nn, for (k = 1, n, print1(sum(i = 0, k-1,(-1)^(n-k-i)*binomial(k-1, i)*(n-i-1)^(n-1))/(k-1)!, ", ");); print(););} \\ Michel Marcus, Aug 28 2013
-
# uses[bell_matrix from A264428]
# Adds 1,0,0,0,... as column 0 at the left side of the triangle.
bell_matrix(lambda n: (-n)^n, 7) # Peter Luschny, Jan 16 2016
A105819
Triangle of the numbers of different forests of m rooted trees of smallest order 2, i.e., without isolated vertices, on N labeled nodes.
Original entry on oeis.org
0, 2, 0, 9, 0, 0, 64, 12, 0, 0, 625, 180, 0, 0, 0, 7776, 2730, 120, 0, 0, 0, 117649, 46410, 3780, 0, 0, 0, 0, 2097152, 893816, 99120, 1680, 0, 0, 0, 0, 43046721, 19389384, 2600640, 90720, 0, 0, 0, 0, 0, 1000000000, 469532790, 71734320, 3654000, 30240, 0
Offset: 1
a(8) = 12 because 4 vertices can be partitioned in two trees only in one way: both trees receiving 2 vertices. Two trees on 2 vertices can be labeled in binomial(4,2) ways and to each one of the 2*binomial(4,2) = 12 possibilities there are more 2 possible trees of order 2 in a forest. But since we have 2 trees of the same order, i.e., 2, we must divide 2*binomial(4,2)*2 by 2!.
Triangle T(n,k) begins:
: 0;
: 2, 0;
: 9, 0, 0;
: 64, 12, 0, 0;
: 625, 180, 0, 0, 0;
: 7776, 2730, 120, 0, 0, 0;
: 117649, 46410, 3780, 0, 0, 0, 0;
: 2097152, 893816, 99120, 1680, 0, 0, 0, 0;
-
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> `if`(n=0,0,(n+1)^n), 9); # Peter Luschny, Jan 27 2016
# second Maple program:
b:= proc(n) option remember; expand(`if`(n=0, 1, add(
binomial(n-1, j-1)*j^(j-1)*x*b(n-j), j=2..n)))
end:
T:= (n, k)-> coeff(b(n), x, k):
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Aug 13 2017
-
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 12;
B = BellMatrix[Function[n, If[n == 0, 0, (n+1)^n]], rows];
Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
A355282
Triangle read by rows: T(n, k) = Sum_{i=1..n-k} qStirling1(n-k, i) * qStirling2(n-1+i, n-1) for 0 < k < n with initial values T(n, 0) = 0^n and T(n, n) = 1 for n >= 0, here q = 2.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 9, 4, 1, 0, 343, 79, 11, 1, 0, 50625, 6028, 454, 26, 1, 0, 28629151, 1741861, 68710, 2190, 57, 1, 0, 62523502209, 1926124954, 38986831, 656500, 9687, 120, 1, 0, 532875860165503, 8264638742599, 84816722571, 734873171, 5760757, 40929, 247, 1
Offset: 0
Triangle T(n, k) for 0 <= k <= n starts:
n\k : 0 1 2 3 4 5 6 7 8
===============================================================================
0 : 1
1 : 0 1
2 : 0 1 1
3 : 0 9 4 1
4 : 0 343 79 11 1
5 : 0 50625 6028 454 26 1
6 : 0 28629151 1741861 68710 2190 57 1
7 : 0 62523502209 1926124954 38986831 656500 9687 120 1
8 : 0 532875860165503 8264638742599 84816722571 734873171 5760757 40929 247 1
etc.
-
# using qStirling2 from A333143.
A355282 := proc(n, k) if k = 0 then 0^n elif n = k then 1 else
add(A342186(n - k, i)*qStirling2(n + i - 2, n - 2, 2), i = 1..n-k) fi end:
seq(print(seq(A355282(n, k), k = 0..n)), n = 0..8); # Peter Luschny, Jun 28 2022
-
mat(nn) = my(m = matrix(nn, nn)); for (n=1, nn, for(k=1, nn, m[n, k] = if (n==1, if (k==1, 1, 0), if (k==1, 1, (2^k-1)*m[n-1, k] + m[n-1, k-1])); ); ); m; \\ A139382
tabl(nn) = my(m=mat(3*nn), im=1/m); matrix(nn, nn, n, k, n--; k--; if (k==0, 0^n, kMichel Marcus, Jun 27 2022
A360657
Number triangle T associated with 2-Stirling numbers and Lehmer-Comtet numbers (see Comments and Formula section).
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 9, 5, 1, 0, 64, 37, 9, 1, 0, 625, 369, 97, 14, 1, 0, 7776, 4651, 1275, 205, 20, 1, 0, 117649, 70993, 19981, 3410, 380, 27, 1, 0, 2097152, 1273609, 365001, 64701, 7770, 644, 35, 1, 0, 43046721, 26269505, 7628545, 1388310, 174951, 15834, 1022, 44, 1
Offset: 0
Triangle T(n, k), 0 <= k <= n, starts:
n\k : 0 1 2 3 4 5 6 7 8 9
==========================================================================
0 : 1
1 : 0 1
2 : 0 2 1
3 : 0 9 5 1
4 : 0 64 37 9 1
5 : 0 625 369 97 14 1
6 : 0 7776 4651 1275 205 20 1
7 : 0 117649 70993 19981 3410 380 27 1
8 : 0 2097152 1273609 365001 64701 7770 644 35 1
9 : 0 43046721 26269505 7628545 1388310 174951 15834 1022 44 1
etc.
From _Peter Bala_, Oct 10 2023: (Start)
LU factorization of the square array of Stirling numbers of the second kind (apply Xu, Lemma 2.2):
/ 1 \ / 1 1 1 1 ...\ / 1 1 1 1 ... \
| 1 1 || 2 5 9 ...| | 1 3 6 10 ... |
| 1 3 1 || 9 37 ...| = | 1 7 25 65 ... |
| 1 7 6 1 || 64 ...| | 1 15 90 350 ... |
| ... || ...| | ... |
(End)
-
tabl(m) = {my(n=2*m, A = matid(n), B, T); for( i = 2, n, for( j = 2, i, A[i, j] = A[i-1, j-1] + j * A[i-1, j] ) ); B = A^(-1); T = matrix( m, m, i, j, if( j == 1, 0^(i-1), sum( r = 0, i-j, B[i-j+1, r+1] * A[i-1+r, i-1] ) ) ); }
Original entry on oeis.org
1, 0, 1, 0, -2, 1, 0, 1, -5, 1, 0, 1, 8, -9, 1, 0, 2, 4, 29, -14, 1, 0, 6, 4, -10, 75, -20, 1, 0, 24, 4, -41, -115, 160, -27, 1, 0, 120, -8, -147, -196, -490, 301, -35, 1, 0, 720, -136, -624, -392, -231, -1484, 518, -44, 1
Offset: 0
Triangle T(n, k) for 0 <= k <= n starts:
n\k : 0 1 2 3 4 5 6 7 8 9
=========================================================
0 : 1
1 : 0 1
2 : 0 -2 1
3 : 0 1 -5 1
4 : 0 1 8 -9 1
5 : 0 2 4 29 -14 1
6 : 0 6 4 -10 75 -20 1
7 : 0 24 4 -41 -115 160 -27 1
8 : 0 120 -8 -147 -196 -490 301 -35 1
9 : 0 720 -136 -624 -392 -231 -1484 518 -44 1
etc.
-
tabl(m) = {my(n=2*m, A = matid(n), B, C, T); for( i = 2, n, for( j = 2, i, A[i, j] = A[i-1, j-1] + j * A[i-1, j] ) ); B = A^(-1); C = matrix( m, m, i, j, if( j == 1, 0^(i-1), sum( r = 0, i-j, B[i-j+1, r+1] * A[i-1+r, i-1] ) ) ); T = 1/C; }
Showing 1-8 of 8 results.
Comments