A045531
Number of sticky functions: endofunctions of [n] having a fixed point.
Original entry on oeis.org
1, 3, 19, 175, 2101, 31031, 543607, 11012415, 253202761, 6513215599, 185311670611, 5777672071535, 195881901213181, 7174630439858727, 282325794823047151, 11878335717996660991, 532092356706983938321, 25283323623228812584415, 1270184310304975912766347
Offset: 1
-
[n^n-(n-1)^n: n in [1..20] ]; // Vincenzo Librandi, May 07 2011
-
Table[Sum[Binomial[n, i] (n - 1)^(n - i), {i, 1, n}], {n, 1, 20}]
-
a(n) = sum(k!*binomial(n-1,k-1)*stirling2(n,k),k,1,n); /* Vladimir Kruchinin, Mar 01 2014 */
-
a(n)=n^n-(n-1)^n; \\ Charles R Greathouse IV, May 08 2011
A008296
Triangle of Lehmer-Comtet numbers of the first kind.
Original entry on oeis.org
1, 1, 1, -1, 3, 1, 2, -1, 6, 1, -6, 0, 5, 10, 1, 24, 4, -15, 25, 15, 1, -120, -28, 49, -35, 70, 21, 1, 720, 188, -196, 49, 0, 154, 28, 1, -5040, -1368, 944, 0, -231, 252, 294, 36, 1, 40320, 11016, -5340, -820, 1365, -987, 1050, 510, 45, 1, -362880, -98208, 34716, 9020, -7645, 3003, -1617, 2970, 825, 55, 1, 3628800
Offset: 1
Triangle begins:
1;
1, 1;
-1, 3, 1;
2, -1, 6, 1;
-6, 0, 5, 10, 1;
24, 4, -15, 25, 15, 1;
...
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 139.
- Alois P. Heinz, Rows n = 1..141, flattened
- H. W. Gould, A Set of Polynomials Associated with the Higher Derivatives of y = x^x, Rocky Mountain J. Math. Volume 26, Number 2 (1996), 615-625.
- Tian-Xiao He and Yuanziyi Zhang, Centralizers of the Riordan Group, arXiv:2105.07262 [math.CO], 2021.
- D. H. Lehmer, Numbers Associated with Stirling Numbers and x^x, Rocky Mountain J. Math., 15(2) 1985, pp. 461-475.
-
for n from 1 to 20 do for k from 1 to n do
printf(`%d,`, add(binomial(l,k)*k^(l-k)*Stirling1(n,l), l=k..n)) od: od:
# second program:
A008296 := proc(n, k) option remember; if k=1 and n>1 then (-1)^n*(n-2)! elif n=k then 1 else (n-1)*procname(n-2, k-1) + (k-n+1)*procname(n-1, k) + procname(n-1, k-1) end if end proc:
seq(print(seq(A008296(n, k), k=1..n)), n=1..7); # Mélika Tebni, Aug 22 2021
-
a[1, 1] = a[2, 1] = 1; a[n_, 1] = (-1)^n (n-2)!;
a[n_, n_] = 1; a[n_, k_] := a[n, k] = (n-1) a[n-2, k-1] + a[n-1, k-1] + (k-n+1) a[n-1,k]; Flatten[Table[a[n, k], {n, 1, 12}, {k, 1, n}]][[1 ;; 67]]
(* Jean-François Alcover, Apr 29 2011 *)
-
{T(n, k) = if( k<1 || k>n, 0, n! * polcoeff(((1 + x) * log(1 + x + x * O(x^n)))^k / k!, n))}; /* Michael Somos, Nov 15 2002 */
-
# uses[bell_matrix from A264428]
# Adds 1, 0, 0, 0, ... as column 0 at the left side of the triangle.
bell_matrix(lambda n: (-1)^(n-1)*factorial(n-1) if n>1 else 1, 7) # Peter Luschny, Jan 16 2016
A055858
Coefficient triangle for certain polynomials.
Original entry on oeis.org
1, 1, 2, 4, 9, 6, 27, 64, 48, 36, 256, 625, 500, 400, 320, 3125, 7776, 6480, 5400, 4500, 3750, 46656, 117649, 100842, 86436, 74088, 63504, 54432, 823543, 2097152, 1835008, 1605632, 1404928, 1229312, 1075648, 941192, 16777216, 43046721
Offset: 0
{1}; {1,2}; {4,9,6}; {27,64,48,36}; ...
Fourth row polynomial (n=3): p(3,x) = 27 + 64*x + 48*x^2 + 36*x^3.
-
a[n_, m_] /; n < m = 0; a[0, 0] = 1; a[n_, 0] := n^n; a[n_, m_] := n^(m-1)*(n+1)^(n-m+1); Table[a[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2013 *)
A354794
Triangle read by rows. The Bell transform of the sequence {m^m | m >= 0}.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 4, 3, 1, 0, 27, 19, 6, 1, 0, 256, 175, 55, 10, 1, 0, 3125, 2101, 660, 125, 15, 1, 0, 46656, 31031, 9751, 1890, 245, 21, 1, 0, 823543, 543607, 170898, 33621, 4550, 434, 28, 1, 0, 16777216, 11012415, 3463615, 688506, 95781, 9702, 714, 36, 1
Offset: 0
Triangle T(n, k) begins:
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 4, 3, 1;
[4] 0, 27, 19, 6, 1;
[5] 0, 256, 175, 55, 10, 1;
[6] 0, 3125, 2101, 660, 125, 15, 1;
[7] 0, 46656, 31031, 9751, 1890, 245, 21, 1;
[8] 0, 823543, 543607, 170898, 33621, 4550, 434, 28, 1;
[9] 0, 16777216, 11012415, 3463615, 688506, 95781, 9702, 714, 36, 1;
- Louis Comtet, Advanced Combinatorics. Reidel, Dordrecht, 1974, p. 139-140.
Cf.
A264428,
A039621 (signed variant),
A195979 (row sums),
A000312 (column 1),
A045531 (column 2),
A281596 (column 3),
A281595 (column 4),
A000217 (diagonal 1),
A215862 (diagonal 2),
A354795 (matrix inverse),
A137452 (Abel).
-
T := (n, k) -> if n = k then 1 else
add((-1)^j*(n-j-1)^(n-1)/(j!*(k-1-j)!), j = 0.. k-1) fi:
seq(seq(T(n, k), k = 0..n), n = 0..9);
# Alternatively, using the function BellMatrix from A264428:
BellMatrix(n -> n^n, 9);
# Or by recursion:
R := proc(n, k, m) option remember;
if k < 0 or n < 0 then 0 elif k = 0 then 1 else
m*R(n, k-1, m) + R(n-1, k, m+1) fi end:
A039621 := (n, k) -> ifelse(n = 0, 1, R(k-1, n-k, n-k)):
-
Unprotect[Power]; Power[0, 0] = 1; pow[n_] := n^n;
R = Range[0, 9]; T[n_, k_] := BellY[n, k, pow[R]];
Table[T[n, k], {n, R}, {k, 0, n}] // Flatten
-
from functools import cache
@cache
def t(n, k, m):
if k < 0 or n < 0: return 0
if k == 0: return n ** k
return m * t(n, k - 1, m) + t(n - 1, k, m + 1)
def A354794(n, k): return t(k - 1, n - k, n - k) if n != k else 1
for n in range(9): print([A354794(n, k) for k in range(n + 1)])
A126781
Number of functions f:{1,2,...,n}->{1,2,...,n} such that Im(f) contains 6 fixed elements.
Original entry on oeis.org
720, 20160, 514080, 13608000, 385363440, 11760819840, 386860668480, 13682898028800, 518666099711760, 20997894426949440, 904827327153291360, 41367795437773022400, 2000634709955550047280, 102066613831917982920960
Offset: 6
Cf.
A039621 (Lehmer-Comtet numbers of 2nd kind).
-
a:=n->n^n-6*(n-1)^n+15*(n-2)^n-20*(n-3)^n+15*(n-4)^n-6*(n-5)^n+(n-6)^n;
-
Drop[Table[Sum[(-1)^k Binomial[6,k] (n-k)^n,{k,0,6}],{n,1,20}],5] (* Geoffrey Critzer, Dec 23 2012 *)
Showing 1-5 of 5 results.
Comments