Original entry on oeis.org
0, 0, 0, 36, 400, 5400, 86436, 1605632, 34012224, 810000000, 21435888100, 624333422592, 19851622826256, 684376513673216, 25430282226562500, 1013309916158361600, 43104723599206637824, 1949779138161985486848
Offset: 0
Original entry on oeis.org
0, 0, 0, 0, 320, 4500, 74088, 1404928, 30233088, 729000000, 19487171000, 572305637376, 18324574916544, 635492476982272, 23734930078125000, 949978046398464000, 40569151622782717952, 1841458074930764070912
Offset: 0
A000312
a(n) = n^n; number of labeled mappings from n points to themselves (endofunctions).
Original entry on oeis.org
1, 1, 4, 27, 256, 3125, 46656, 823543, 16777216, 387420489, 10000000000, 285311670611, 8916100448256, 302875106592253, 11112006825558016, 437893890380859375, 18446744073709551616, 827240261886336764177, 39346408075296537575424, 1978419655660313589123979
Offset: 0
G.f. = 1 + x + 4*x^2 + 27*x^3 + 256*x^4 + 3125*x^5 + 46656*x^6 + 823543*x^7 + ...
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, pp. 62, 63, 87.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 173, #39.
- A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.2.37)
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Kenny Lau, Table of n, a(n) for n = 0..385 [First 100 terms computed by T. D. Noe]
- Taylor Ball, David Galvin, Katie Hyry, and Kyle Weingartner, Independent set and matching permutations, arXiv:1901.06579 [math.CO], 2019.
- Arthur T. Benjamin and Fritz Juhnke, Another way of counting n^n, SIAM J. Discrete Math., Vol. 5, No. 3 (1992), pp. 377-379. - _N. J. A. Sloane_, Jun 09 2011
- H. Bottomley, Illustration of initial terms.
- H. J. Brothers and J. A. Knox, New closed-form approximations to the logarithmic constant e, The Mathematical Intelligencer, Vol. 20 (4), 1998, pp. 25-29. (Sequence appears as formula in Eq. (8))
- C. Chauve, S. Dulucq and O. Guibert, Enumeration of some labeled trees, Proceedings of FPSAC/SFCA 2000 (Moscow), Springer, pp. 146-157.
- Bérénice Delcroix-Oger and Clément Dupont, Lie-operads and operadic modules from poset cohomology, arXiv:2505.06094 [math.CO], 2025. See p. 34.
- Frank Ellermann, Illustration of binomial transforms.
- José María Grau and Antonio M. Oller-Marcén, On the last digit and the last non-zero digit of n^n in base b, Bulletin of the Korean Mathematical Society, Vol. 51, No. 5 (2014), pp. 1325-1337; arXiv preprint, arXiv:1203.4066 [math.NT], 2012.
- Nick Hobson, Solution to puzzle 48: Exponential equation.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 36.
- Steven J. Miller (ed.), Exercises to "The Theory and Applications of Benford's Law", Princeton University Press, 2015.
- Mustafa Obaid et al., The number of complete exceptional sequences for a Dynkin algebra, arXiv preprint arXiv:1307.7573 [math.RT], 2013.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- E. Vigren (Proposer), Problem 12432, Amer. Math. Monthly 130 (2023), p. 953.
- Elena L. Wang and Guoce Xin, On Ward Numbers and Increasing Schröder Trees, arXiv:2507.15654 [math.CO], 2025. See pp. 12-13.
- Eric Weisstein's World of Mathematics, Hadamard's Maximum Determinant Problem.
- Eric Weisstein's World of Mathematics, Hankel Matrix.
- Dimitri Zvonkine, An algebra of power series..., arXiv:math/0403092 [math.AG], 2004.
- Index entries for "core" sequences
- Index entries for sequences related to rooted trees
- Index entries for sequences related to Benford's law
Cf.
A000107,
A000169,
A000272,
A001372,
A007778,
A007830,
A008785-
A008791,
A019538,
A048993,
A008279,
A085741,
A062206,
A212333.
-
a000312 n = n ^ n
a000312_list = zipWith (^) [0..] [0..] -- Reinhard Zumkeller, Jul 07 2012
-
A000312 := n->n^n: seq(A000312(n), n=0..17);
-
Array[ #^# &, 16] (* Vladimir Joseph Stephan Orlovsky, May 01 2008 *)
Table[Sum[StirlingS2[n, i] i! Binomial[n, i], {i, 0, n}], {n, 0, 20}] (* Geoffrey Critzer, Mar 17 2009 *)
a[ n_] := If[ n < 1, Boole[n == 0], n^n]; (* Michael Somos, May 24 2014 *)
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ 1 / (1 + LambertW[-x]), {x, 0, n}]]; (* Michael Somos, May 24 2014 *)
a[ n_] := If[n < 0, 0, n! SeriesCoefficient[ Nest[ 1 / (1 - x / (1 - Integrate[#, x])) &, 1 + O[x], n], {x, 0, n}]]; (* Michael Somos, May 24 2014 *)
a[ n_] := If[ n < 0, 0, With[{m = n + 1}, m! SeriesCoefficient[ InverseSeries[ Series[ (x - 1) Log[1 - x], {x, 0, m}]], m]]]; (* Michael Somos, May 24 2014 *)
-
A000312[n]:=if n=0 then 1 else n^n$
makelist(A000312[n],n,0,30); /* Martin Ettl, Oct 29 2012 */
-
{a(n) = n^n};
-
is(n)=my(b,k=ispower(n,,&b));if(k,for(e=1,valuation(k,b), if(k/b^e == e, return(1)))); n==1 \\ Charles R Greathouse IV, Jan 14 2013
-
{a(n) = my(A = 1 + O(x)); if( n<0, 0, for(k=1, n, A = 1 / (1 - x / (1 - intformal( A)))); n! * polcoeff( A, n))}; /* Michael Somos, May 24 2014 */
-
def A000312(n): return n**n # Chai Wah Wu, Nov 07 2022
A045531
Number of sticky functions: endofunctions of [n] having a fixed point.
Original entry on oeis.org
1, 3, 19, 175, 2101, 31031, 543607, 11012415, 253202761, 6513215599, 185311670611, 5777672071535, 195881901213181, 7174630439858727, 282325794823047151, 11878335717996660991, 532092356706983938321, 25283323623228812584415, 1270184310304975912766347
Offset: 1
-
[n^n-(n-1)^n: n in [1..20] ]; // Vincenzo Librandi, May 07 2011
-
Table[Sum[Binomial[n, i] (n - 1)^(n - i), {i, 1, n}], {n, 1, 20}]
-
a(n) = sum(k!*binomial(n-1,k-1)*stirling2(n,k),k,1,n); /* Vladimir Kruchinin, Mar 01 2014 */
-
a(n)=n^n-(n-1)^n; \\ Charles R Greathouse IV, May 08 2011
A055869
a(n) = (n+1)^n - n^n.
Original entry on oeis.org
1, 5, 37, 369, 4651, 70993, 1273609, 26269505, 612579511, 15937424601, 457696700077, 14381984674225, 490839666661891, 18080919199832609, 715027614225987601, 30214447801957316865, 1358671297852359767791, 64780942222614703957417, 3264460344339686410876021
Offset: 1
Original entry on oeis.org
0, 2, 12, 100, 1080, 14406, 229376, 4251528, 90000000, 2143588810, 56757583872, 1654301902188, 52644347205632, 1816448730468750, 67553994410557440, 2694045224950414864, 114692890480116793344, 5191945444217181018258, 249036800000000000000000, 12617615847934310595791220
Offset: 1
A055860
a(n) = A000169(n+1) if n > 0; a(0) = 0.
Original entry on oeis.org
0, 2, 9, 64, 625, 7776, 117649, 2097152, 43046721, 1000000000, 25937424601, 743008370688, 23298085122481, 793714773254144, 29192926025390625, 1152921504606846976, 48661191875666868481, 2185911559738696531968
Offset: 0
A055864
Coefficient triangle for certain polynomials.
Original entry on oeis.org
1, 3, 2, 16, 12, 9, 125, 100, 80, 64, 1296, 1080, 900, 750, 625, 16807, 14406, 12348, 10584, 9072, 7776, 262144, 229376, 200704, 175616, 153664, 134456, 117649, 4782969, 4251528, 3779136, 3359232, 2985984, 2654208, 2359296, 2097152
Offset: 1
Fourth row polynomial (n=4): p(4,x) = 125+100*x+80*x^2+64*x^3.
Triangle begins:
1;
3, 2;
16, 12, 9;
125, 100, 80, 64;
1296, 1080, 900, 750, 625;
16807, 14406, 12348, 10584, 9072, 7776;
262144, 229376, 200704, 175616, 153664, 134456, 117649;
4782969, 4251528, 3779136, 3359232, 2985984, 2654208, 2359296, 2097152;
...
-
a[n_, m_] /; n < m = 0; a[n_, m_] := n^(m-1)*(n+1)^(n-m); Table[a[n, m], {n, 1, 8}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 20 2013 *)
Original entry on oeis.org
0, 0, 0, 64, 750, 10584, 175616, 3359232, 72900000, 1771561000, 47692136448, 1409582685888, 45392319784448, 1582328671875000, 59373627899904000, 2386420683693101056, 102303226385042448384, 4659806991485780193672
Offset: 1
A055861
Essentially A053506 but with leading 0 (instead of 1) and offset 0.
Original entry on oeis.org
0, 0, 6, 48, 500, 6480, 100842, 1835008, 38263752, 900000000, 23579476910, 681091006464, 21505924728444, 737020860878848, 27246730957031250, 1080863910568919040, 45798768824157052688, 2064472028642102280192
Offset: 0
Showing 1-10 of 11 results.
Comments