A055864 Coefficient triangle for certain polynomials.
1, 3, 2, 16, 12, 9, 125, 100, 80, 64, 1296, 1080, 900, 750, 625, 16807, 14406, 12348, 10584, 9072, 7776, 262144, 229376, 200704, 175616, 153664, 134456, 117649, 4782969, 4251528, 3779136, 3359232, 2985984, 2654208, 2359296, 2097152
Offset: 1
Examples
Fourth row polynomial (n=4): p(4,x) = 125+100*x+80*x^2+64*x^3. Triangle begins: 1; 3, 2; 16, 12, 9; 125, 100, 80, 64; 1296, 1080, 900, 750, 625; 16807, 14406, 12348, 10584, 9072, 7776; 262144, 229376, 200704, 175616, 153664, 134456, 117649; 4782969, 4251528, 3779136, 3359232, 2985984, 2654208, 2359296, 2097152; ...
Crossrefs
Programs
-
Mathematica
a[n_, m_] /; n < m = 0; a[n_, m_] := n^(m-1)*(n+1)^(n-m); Table[a[n, m], {n, 1, 8}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 20 2013 *)
Formula
a(n, m)=0 if n= m >= 1;
E.g.f. for column m: A(m, x); A(1, x)=-(W(-x)/x+1); recursion: A(m, x) = A(m-1, x)-int(A(m-1, x), x)/x-(((m-1)^(m-1))/m)* (x^(m-1))/(m-1)!, m >= 2; W(x) principal branch of Lambert's function.
Comments