cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A055865 Second column of triangle A055864.

Original entry on oeis.org

0, 2, 12, 100, 1080, 14406, 229376, 4251528, 90000000, 2143588810, 56757583872, 1654301902188, 52644347205632, 1816448730468750, 67553994410557440, 2694045224950414864, 114692890480116793344, 5191945444217181018258, 249036800000000000000000, 12617615847934310595791220
Offset: 1

Views

Author

Wolfdieter Lang Jun 20 2000

Keywords

Crossrefs

Programs

Formula

a(1) = 0; a(n) = n*(n+1)^(n-2), n >= 2.
E.g.f.: -1/2*(-W(-x)^2+x^2)/x, W(x) principal branch of Lambert's function.
a(n) = A055864(n, 2).

A055070 Third column of triangle A055864.

Original entry on oeis.org

0, 0, 9, 80, 900, 12348, 200704, 3779136, 81000000, 1948717100, 52027785216, 1527047909712, 48884036690944, 1695352148437500, 63331869759897600, 2535571976423919872, 108321063231221415936, 4918685157679434648876
Offset: 1

Views

Author

Wolfdieter Lang Jun 20 2000

Keywords

Crossrefs

Formula

a(1)=0= a(2); a(n)= n^2*(n+1)^(n-3), n >= 3.
E.g.f. (3*W(-x)^2-2*W(-x)^3-3*x^2-8*x^3)/(12*x), W(x) principal branch of Lambert's function.
a(n)=A055864(n, 3).

A055867 Fourth column of triangle A055864.

Original entry on oeis.org

0, 0, 0, 64, 750, 10584, 175616, 3359232, 72900000, 1771561000, 47692136448, 1409582685888, 45392319784448, 1582328671875000, 59373627899904000, 2386420683693101056, 102303226385042448384, 4659806991485780193672
Offset: 1

Views

Author

Wolfdieter Lang, Jun 20 2000

Keywords

Crossrefs

Programs

Formula

a(i)=0 for i=1, 2, 3; a(n) = n^3*(n+1)^(n-4), n >= 4.
E.g.f.: (9*W(-x)^2-14*W(-x)^3+3*W(-x)^4-9*x^2-32*x^3-81*x^4)/(72*x), W(x) principal branch of Lambert's function.

A055868 Fifth column of triangle A055864.

Original entry on oeis.org

0, 0, 0, 0, 625, 9072, 153664, 2985984, 65610000, 1610510000, 43717791744, 1301153248512, 42150011228416, 1476840093750000, 55662776156160000, 2246042996417036288, 96619713808095645696, 4414553991933897025584
Offset: 1

Views

Author

Wolfdieter Lang Jun 20 2000

Keywords

Crossrefs

Formula

a(i)=0 for i=1..4; a(n)= n^4*(n+1)^(n-5), n >= 5.
E.g.f.: (270*W(-x)^2-740*W(-x)^3+345*W(-x)^4-36*W(-x)^5-270*x^2-1280*x^3-3645*x^4-9216*x^5)/(4320*x), W(x) principal branch of Lambert's function.

A055858 Coefficient triangle for certain polynomials.

Original entry on oeis.org

1, 1, 2, 4, 9, 6, 27, 64, 48, 36, 256, 625, 500, 400, 320, 3125, 7776, 6480, 5400, 4500, 3750, 46656, 117649, 100842, 86436, 74088, 63504, 54432, 823543, 2097152, 1835008, 1605632, 1404928, 1229312, 1075648, 941192, 16777216, 43046721
Offset: 0

Views

Author

Wolfdieter Lang, Jun 20 2000

Keywords

Comments

The coefficients of the partner polynomials are found in triangle A055864.

Examples

			{1}; {1,2}; {4,9,6}; {27,64,48,36}; ...
Fourth row polynomial (n=3): p(3,x) = 27 + 64*x + 48*x^2 + 36*x^3.
		

Crossrefs

Column sequences are A000312(n), n >= 1, A055860 (A000169), A055861 (A053506), A055862-3 for m=0..4, row sums: A045531(n+1)= |A039621(n+1, 2)|, n >= 0.

Programs

  • Mathematica
    a[n_, m_] /; n < m = 0; a[0, 0] = 1; a[n_, 0] := n^n; a[n_, m_] := n^(m-1)*(n+1)^(n-m+1); Table[a[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2013 *)

Formula

a(n, m)=0 if n < m; a(0, 0)=1, a(n, 0) = n^n, n >= 1, a(n, m) = n^(m-1)*(n+1)^(n-m+1), n >= m >= 1;
E.g.f. for column m: A(m, x); A(0, x) = 1/(1+W(-x)); A(1, x) = -1 - (d/dx)W(-x) = -1-W(-x)/((1+W(-x))*x); A(2, x) = A(1, x)-int(A(1, x), x)/x-(1/x+x); recursion: A(m, x) = A(m-1, x)-int(A(m-1, x), x)/x-((m-1)^(m-1))*(x^(m-1))/(m-1)!, m >= 3; W(x) principal branch of Lambert's function.

A055869 a(n) = (n+1)^n - n^n.

Original entry on oeis.org

1, 5, 37, 369, 4651, 70993, 1273609, 26269505, 612579511, 15937424601, 457696700077, 14381984674225, 490839666661891, 18080919199832609, 715027614225987601, 30214447801957316865, 1358671297852359767791, 64780942222614703957417, 3264460344339686410876021
Offset: 1

Views

Author

Wolfdieter Lang, Jun 20 2000

Keywords

Comments

Number of functions f:[n]->[n+1] such that some x in [n] maps to n+1.
Number of switching generators for a power polyadic n-context ({1..k}, ..., {1..k}, <>) with n=k [Theorems 5 and 6, page 81, in Ignatov]. - Dmitry I. Ignatov, Nov 23 2022

Crossrefs

Row sums of triangle A055864.

Programs

Formula

E.g.f.: W(-x)*(x-1)/((1+W(-x))*x), W(x) principal branch of Lambert's function.
a(n) = Sum_{m=1..n} A055864(n, m).
a(n) = Sum_{i=0..n-1} n^i*C(n, i). - Olivier Gérard, Jun 26 2001
With interpolated zeros, ceiling(n/2)^floor(n/2) - floor(n/2)^floor(n/2). - Paul Barry, Jul 13 2005
a(n) = Sum_{k=1..n} (-1)^(n-k)*k!*Stirling2(n,k)*binomial(n+k-1,n). - Vladimir Kruchinin, Sep 20 2015

Extensions

More terms from Vincenzo Librandi, Jan 11 2015
Showing 1-6 of 6 results.