cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A228273 T(n,k) is the number of s in {1,...,n}^n having longest ending contiguous subsequence with the same value of length k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 0, 18, 6, 3, 0, 192, 48, 12, 4, 0, 2500, 500, 100, 20, 5, 0, 38880, 6480, 1080, 180, 30, 6, 0, 705894, 100842, 14406, 2058, 294, 42, 7, 0, 14680064, 1835008, 229376, 28672, 3584, 448, 56, 8, 0, 344373768, 38263752, 4251528, 472392, 52488, 5832, 648, 72, 9
Offset: 0

Views

Author

Alois P. Heinz, Aug 19 2013

Keywords

Examples

			T(0,0) = 1: [].
T(1,1) = 1: [1].
T(2,1) = 2: [1,2], [2,1].
T(2,2) = 2: [1,1], [2,2].
T(3,1) = 18: [1,1,2], [1,1,3], [1,2,1], [1,2,3], [1,3,1], [1,3,2], [2,1,2], [2,1,3], [2,2,1], [2,2,3], [2,3,1], [2,3,2], [3,1,2], [3,1,3], [3,2,1], [3,2,3], [3,3,1], [3,3,2].
T(3,2) = 6: [1,2,2], [1,3,3], [2,1,1], [2,3,3], [3,1,1], [3,2,2].
T(3,3) = 3: [1,1,1], [2,2,2], [3,3,3].
Triangle T(n,k) begins:
  1;
  0,        1;
  0,        2,       2;
  0,       18,       6,      3;
  0,      192,      48,     12,     4;
  0,     2500,     500,    100,    20,    5;
  0,    38880,    6480,   1080,   180,   30,   6;
  0,   705894,  100842,  14406,  2058,  294,  42,  7;
  0, 14680064, 1835008, 229376, 28672, 3584, 448, 56,  8;
		

Crossrefs

Row sums give: A000312.
Columns k=0-4 give: A000007, A066274(n) = 2*A081131(n) for n>1, A053506(n) for n>2, A055865(n-1) = A085389(n-1) for n>3, A085390(n-1) for n>4.
Main diagonal gives: A028310.
Lower diagonals include (offsets may differ): A002378, A045991, A085537, A085538, A085539.

Programs

  • Maple
    T:= (n, k)-> `if`(n=0 and k=0, 1, `if`(k<1 or k>n, 0,
                 `if`(k=n, n, (n-1)*n^(n-k)))):
    seq(seq(T(n,k), k=0..n), n=0..12);
  • Mathematica
    f[0,0]=1;
    f[n_,k_]:=Which[1<=k<=n-1,n^(n-k)*(n-1),k<1,0,k==n,n,k>n,0];
    Table[Table[f[n,k],{k,0,n}],{n,0,10}]//Grid (* Geoffrey Critzer, May 19 2014 *)

Formula

T(0,0) = 1, else T(n,k) = 0 for k<1 or k>n, else T(n,n) = n, else T(n,k) = (n-1)*n^(n-k).
Sum_{k=0..n} T(n,k) = A000312(n).
Sum_{k=0..n} k*T(n,k) = A031972(n).

A055864 Coefficient triangle for certain polynomials.

Original entry on oeis.org

1, 3, 2, 16, 12, 9, 125, 100, 80, 64, 1296, 1080, 900, 750, 625, 16807, 14406, 12348, 10584, 9072, 7776, 262144, 229376, 200704, 175616, 153664, 134456, 117649, 4782969, 4251528, 3779136, 3359232, 2985984, 2654208, 2359296, 2097152
Offset: 1

Views

Author

Wolfdieter Lang, Jun 20 2000

Keywords

Comments

The coefficients of the partner polynomials are found in triangle A055858.

Examples

			Fourth row polynomial (n=4): p(4,x) = 125+100*x+80*x^2+64*x^3.
Triangle begins:
        1;
        3,       2;
       16,      12,       9;
      125,     100,      80,      64;
     1296,    1080,     900,     750,     625;
    16807,   14406,   12348,   10584,    9072,    7776;
   262144,  229376,  200704,  175616,  153664,  134456,  117649;
  4782969, 4251528, 3779136, 3359232, 2985984, 2654208, 2359296, 2097152;
  ...
		

Crossrefs

Column sequences are: A000272(n+1), n >= 1, A055865, A055070, A055867, A055868 for m=1..5.
Main diagonal gives A000169.

Programs

  • Mathematica
    a[n_, m_] /; n < m = 0; a[n_, m_] := n^(m-1)*(n+1)^(n-m); Table[a[n, m], {n, 1, 8}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 20 2013 *)

Formula

a(n, m)=0 if n= m >= 1;
E.g.f. for column m: A(m, x); A(1, x)=-(W(-x)/x+1); recursion: A(m, x) = A(m-1, x)-int(A(m-1, x), x)/x-(((m-1)^(m-1))/m)* (x^(m-1))/(m-1)!, m >= 2; W(x) principal branch of Lambert's function.

A085389 a(1) = 1; for n >= 2, a(n) = (n*(n+1)^(n-1))/(n+1).

Original entry on oeis.org

1, 2, 12, 100, 1080, 14406, 229376, 4251528, 90000000, 2143588810, 56757583872, 1654301902188, 52644347205632, 1816448730468750, 67553994410557440, 2694045224950414864, 114692890480116793344, 5191945444217181018258, 249036800000000000000000, 12617615847934310595791220
Offset: 1

Views

Author

Paul Barry, Jun 30 2003

Keywords

Crossrefs

Programs

Formula

Main subdiagonal of A085388.
a(n) = A055865(n), n>1. - R. J. Mathar, Sep 12 2008
a(n) = [x^n] x*(1 - x)/(1 - x - n*x). - Ilya Gutkovskiy, Oct 02 2017

Extensions

Name edited by Paolo Xausa, Aug 07 2025

A055070 Third column of triangle A055864.

Original entry on oeis.org

0, 0, 9, 80, 900, 12348, 200704, 3779136, 81000000, 1948717100, 52027785216, 1527047909712, 48884036690944, 1695352148437500, 63331869759897600, 2535571976423919872, 108321063231221415936, 4918685157679434648876
Offset: 1

Views

Author

Wolfdieter Lang Jun 20 2000

Keywords

Crossrefs

Formula

a(1)=0= a(2); a(n)= n^2*(n+1)^(n-3), n >= 3.
E.g.f. (3*W(-x)^2-2*W(-x)^3-3*x^2-8*x^3)/(12*x), W(x) principal branch of Lambert's function.
a(n)=A055864(n, 3).

A055867 Fourth column of triangle A055864.

Original entry on oeis.org

0, 0, 0, 64, 750, 10584, 175616, 3359232, 72900000, 1771561000, 47692136448, 1409582685888, 45392319784448, 1582328671875000, 59373627899904000, 2386420683693101056, 102303226385042448384, 4659806991485780193672
Offset: 1

Views

Author

Wolfdieter Lang, Jun 20 2000

Keywords

Crossrefs

Programs

Formula

a(i)=0 for i=1, 2, 3; a(n) = n^3*(n+1)^(n-4), n >= 4.
E.g.f.: (9*W(-x)^2-14*W(-x)^3+3*W(-x)^4-9*x^2-32*x^3-81*x^4)/(72*x), W(x) principal branch of Lambert's function.

A055868 Fifth column of triangle A055864.

Original entry on oeis.org

0, 0, 0, 0, 625, 9072, 153664, 2985984, 65610000, 1610510000, 43717791744, 1301153248512, 42150011228416, 1476840093750000, 55662776156160000, 2246042996417036288, 96619713808095645696, 4414553991933897025584
Offset: 1

Views

Author

Wolfdieter Lang Jun 20 2000

Keywords

Crossrefs

Formula

a(i)=0 for i=1..4; a(n)= n^4*(n+1)^(n-5), n >= 5.
E.g.f.: (270*W(-x)^2-740*W(-x)^3+345*W(-x)^4-36*W(-x)^5-270*x^2-1280*x^3-3645*x^4-9216*x^5)/(4320*x), W(x) principal branch of Lambert's function.

A386011 Total number of inversions in all parking functions of length n.

Original entry on oeis.org

0, 1, 18, 300, 5400, 108045, 2408448, 59521392, 1620000000, 48230748225, 1560833556480, 54591962772204, 2053129541019648, 82648417236328125, 3546584706554265600, 161642713497024891840, 7799116552647941947392, 397183826482614347896737
Offset: 1

Views

Author

Kyle Celano, Jul 14 2025

Keywords

Examples

			a(2)=1 because in the 3 parking functions of length 2 (11, 12, 21), there is 1 inversion: (1,2).
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[n,2] * n*(n+1)^(n-2)/2, {n, 0, 18}]

Formula

a(n) = binomial(n,2) * n*(n+1)^(n-2)/2.
a(n) = Sum_{k=0..binomial(n,2)} A152290(n,k)*k.
a(n) = binomial(n,2)*A055865(n)/2.
Showing 1-7 of 7 results.