1, 0, 1, 0, 2, 1, 0, 9, 5, 1, 0, 64, 37, 9, 1, 0, 625, 369, 97, 14, 1, 0, 7776, 4651, 1275, 205, 20, 1, 0, 117649, 70993, 19981, 3410, 380, 27, 1, 0, 2097152, 1273609, 365001, 64701, 7770, 644, 35, 1, 0, 43046721, 26269505, 7628545, 1388310, 174951, 15834, 1022, 44, 1
Offset: 0
Triangle T(n, k), 0 <= k <= n, starts:
n\k : 0 1 2 3 4 5 6 7 8 9
==========================================================================
0 : 1
1 : 0 1
2 : 0 2 1
3 : 0 9 5 1
4 : 0 64 37 9 1
5 : 0 625 369 97 14 1
6 : 0 7776 4651 1275 205 20 1
7 : 0 117649 70993 19981 3410 380 27 1
8 : 0 2097152 1273609 365001 64701 7770 644 35 1
9 : 0 43046721 26269505 7628545 1388310 174951 15834 1022 44 1
etc.
From _Peter Bala_, Oct 10 2023: (Start)
LU factorization of the square array of Stirling numbers of the second kind (apply Xu, Lemma 2.2):
/ 1 \ / 1 1 1 1 ...\ / 1 1 1 1 ... \
| 1 1 || 2 5 9 ...| | 1 3 6 10 ... |
| 1 3 1 || 9 37 ...| = | 1 7 25 65 ... |
| 1 7 6 1 || 64 ...| | 1 15 90 350 ... |
| ... || ...| | ... |
(End)
Comments