cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A232006 Triangular array read by rows: T(n,k) is the number of simple labeled graphs on vertex set {1,2,...,n} with exactly k components (all of which are trees) such that the labels {1,2,...,k} are all in distinct components (trees), n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 16, 8, 3, 1, 0, 125, 50, 15, 4, 1, 0, 1296, 432, 108, 24, 5, 1, 0, 16807, 4802, 1029, 196, 35, 6, 1, 0, 262144, 65536, 12288, 2048, 320, 48, 7, 1, 0, 4782969, 1062882, 177147, 26244, 3645, 486, 63, 8, 1, 0, 100000000, 20000000, 3000000, 400000, 50000, 6000, 700, 80, 9, 1
Offset: 0

Views

Author

Geoffrey Critzer, Nov 16 2013

Keywords

Comments

Row sums = (n^n-n)/(n-1)^2 = A058128(n).
Column k without leading zeros is the k-th exponential (also called binomial) convolution of the sequence {A000272(n+1)} = {A232006(n+1, 1)}, for n >= 0, with e.g.f. LamberW(-x)/(-x), where LambertW is the principal branch of the Lambert W-function. This is also the row polynomial P(n, x) of the unsigned triangle A137452, evaluated at x = k. - Wolfdieter Lang, Apr 24 2023

Examples

			The triangle begins:
n\k  0         1        2       3      4     5    6   7  8 9 10 ...
0:   1
1:   0         1
2:   0         1        1
3:   0         3        2       1
4:   0        16        8       3      1
5:   0       125       50      15      4     1
6:   0      1296      432     108     24     5    1
7:   0     16807     4802    1029    196    35    6   1
8:   0    262144    65536   12288   2048   320   48   7  1
9:   0   4782969  1062882  177147  26244  3645  486  63  8 1
10:  0 100000000 20000000 3000000 400000 50000 6000 700 80 9  1
... Reformatted by _Wolfdieter Lang_, Apr 24 2023
		

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Proposition 5.3.2.

Crossrefs

Columns give A000007, A000272, A007334, A362354, A362355, A362356, ...

Programs

  • Mathematica
    Prepend[Table[Table[k n^(n-k-1),{k,0,n}],{n,1,8}],{1}]//Grid
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, n^(n-k-1))}; /* Michael Somos, May 15 2017 */

Formula

T(n, k) = k*n^(n-k-1).
T(n, k) = Sum_{i=0..n-k} T(n-1, k-1+i)*C(n-k,i), T(0, 0) = 1, T(n, 0) = 0 when n >= 1.
From Wolfdieter Lang, Apr 24 2023: (Start)
E.g.f. for {T(n+k, k)}_{n>=0} is (LambertW(-x)/(-x))^k, for k >= 0.
T(n, k) = Sum_{m=0..n-k} |A137452(n-k, m)|*k^m, for n >= 0 and k = 0..n. That is, T(n, n) = 1, for n >= 0, and T(n, k) = Sum_{m=1..n-k} binomial(n-k-1, m-1)*(n-k)^(n-k-m)*k^m, for k = 0..n-1 and n >= k+1. (End)

A375903 E.g.f. satisfies A(x) = (2 - exp(x * A(x)^(1/3)))^3.

Original entry on oeis.org

1, -3, 9, -18, -57, 942, -4299, -33078, 786267, -4357818, -84919647, 2153185746, -9754462833, -539983739298, 13389257569005, -13826647549926, -6661768436593725, 153336015047780790, 938088731006163417, -139051687661849130654, 2787586449012275332023
Offset: 0

Views

Author

Seiichi Manyama, Sep 02 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace((serreverse(x/(2-exp(x)))/x)^3))
    
  • PARI
    a(n) = 3*(n+2)!*sum(k=0, n, (-1)^k*stirling(n, k, 2)/(n-k+3)!);

Formula

E.g.f.: A(x) = ( (1/x) * Series_Reversion(x / (2 - exp(x))) )^3.
a(n) = 3 * (n+2)! * Sum_{k=0..n} (-1)^k * Stirling2(n,k)/(n-k+3)!.
Showing 1-2 of 2 results.