cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A002410 Nearest integer to imaginary part of n-th zero of Riemann zeta function.

Original entry on oeis.org

14, 21, 25, 30, 33, 38, 41, 43, 48, 50, 53, 56, 59, 61, 65, 67, 70, 72, 76, 77, 79, 83, 85, 87, 89, 92, 95, 96, 99, 101, 104, 105, 107, 111, 112, 114, 116, 119, 121, 123, 124, 128, 130, 131, 133, 135, 138, 140, 141, 143, 146, 147, 150, 151, 153, 156, 158, 159, 161
Offset: 1

Views

Author

Keywords

Comments

"All these zeros of the form s + it have real part s = 1/2 and are simple. Thus the Riemann hypothesis is true at least for t < 3330657430697." - Wedeniwski
From Daniel Forgues, Jul 24 2009: (Start)
All nontrivial zeros on the critical line, of the form 1/2 + i*t, have an associated conjugate nontrivial zero of the form 1/2 - i*t.
Any nontrivial zeros off the critical line, if ever found, would come in pairs (1/2 +- delta) + i*t, 0 < delta < 1/2. Each of these pairs, again if ever found, would then have their associated conjugate pair (1/2 +- delta) - i*t, 0 < delta < 1/2. (End)
The sequence is not strictly increasing. - Joerg Arndt, Jan 17 2015
The fraction of numbers n such that a(n) = a(n-1) has density 1. There are only finitely many numbers n with a(n) > a(n-1) + 1, see A208436. - Charles R Greathouse IV, Mar 07 2018
Conjecture: Noninteger rationals of the form m/2^bigomega(m) that can be used to approximate this sequence, i.e. a(n) ~~ 2*Pi*A374074(n)/2^bigomega(A374074(n)) - n/2 +- (...), where '~~' means 'close to'. - Friedjof Tellkamp, Jul 04 2024

Examples

			The imaginary parts of the first 4 zeros are 14.134725... (A058303), 21.0220396... (A065434), 25.01085758... (A065452), 30.424876... (A065453).
		

References

  • Gregory Benford, Gravity's whispers, Futures Column, Nature, 446 (Jul 15 2010), p. 406. [Gravity waves are detected on Earth that turn out to contain a list of the zeros of the Riemann zeta function, essentially this sequence]
  • E. Bombieri, "The Riemann Hypothesis" in 'The Millennium Prize Problems' Chap. 7 pp. 107-128 Eds: J. Carlson, A. Jaffe & A. Wiles, Amer. Math. Soc. Providence RI 2006.
  • P. Borwein et al., The Riemann Hypothesis, Can. Math. Soc. (CMS) Ottawa ON 2007.
  • S. Chowla, Riemann Hypothesis and Hilbert's Tenth Problem, Mathematics and Its Application Series Vol. 4, Taylor & Francis NY 1965.
  • J. Derbyshire, Prime Obsession, Penguin Books 2004.
  • K. Devlin, The Millennium Problems, Chapter 1 (pp. 19-62) Basic Books NY 2002.
  • M. du Sautoy, The Music of the Primes, Fourth Estate/HarperCollins NY 2003.
  • H. M. Edwards, Riemann's Zeta Function, Academic Press, NY, 1974, p. 96.
  • C. B. Haselgrove and J. C. P. Miller, Tables of the Riemann Zeta Function. Royal Society Mathematical Tables, Vol. 6, Cambridge Univ. Press, 1960, p. 58.
  • A. Ivic, The Riemann Zeta-Function: Theory and Applications, Dover NY 2003.
  • D. S. Jandu, Riemann Hypothesis and Prime Number Theorem, Infinite Bandwidth Publishing, N. Hollywood CA 2006.
  • A. A. Karatsuba & S. M. Voronin, The Riemann Zeta-Function, Walter de Gruyter, Berlin 1992.
  • G. Lachaud, "L'hypothèse de Riemann" in La Recherche No.346 October 2001 pp. 24-30 (or Les Dossiers de La Recherche No. Aug 20 2005 pp. 26-35) Paris.
  • M. L. Lapidus, In Search of the Riemann Zeros, Amer. Math. Soc. (AMS) Providence RI 2008.
  • P. Meier & J. Steuding, "L'hypothèse de Riemann" in 'Pour la Science' (French Edition of 'Scientific American') pp 22-9, March 2009, Issue No. 377, Paris.
  • P. Odifreddi, The Mathematical Century, Chapter 5.2, p. 168, Princeton Univ. Press NJ 2004.
  • S. J. Patterson, An Introduction to the Theory of the Riemann Zeta-Function, Cambridge Univ. Press, UK 1995.
  • D. N. Rockmore, Stalking the Riemann Hypothesis, Jonathan Cape UK 2005.
  • K. Sabbagh, The Riemann Hypothesis, Farrar Straus Giroux NY 2003.
  • K. Sabbagh, Dr. Riemann's Zeros, Atlantic Books London 2003.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon Press NY 1986.

Crossrefs

Cf. A013629 (floor), A092783 (ceiling), A057641, A057640, A058209, A058210, A120401, A122526, A072080, A124288 ("unstable" zeta zeros), A124289 ("unstable twins"), A236212, A177885, A374074 (approximation).
Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1), A065434 (k=2), A065452 (k=3), A065453 (k=4), A192492 (k=5), A305741 (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).

Programs

Formula

a(n) ~ (2*Pi*e) * e^(W0(n/e)), where W0 is the principal branch of Lambert's W function. - Charles R Greathouse IV, Sep 14 2012, corrected by Hal M. Switkay, Oct 04 2021
a(n) ~ 2*Pi*(n - 11/8)/ProductLog((n - 11/8)/exp(1)). This is the asymptotic by Guilherme França and André LeClair. - Mats Granvik, Mar 10 2015; corrected May 16 2016

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 08 2004

A137452 Triangular array of the coefficients of the sequence of Abel polynomials A(n,x) := x*(x-n)^(n-1).

Original entry on oeis.org

1, 0, 1, 0, -2, 1, 0, 9, -6, 1, 0, -64, 48, -12, 1, 0, 625, -500, 150, -20, 1, 0, -7776, 6480, -2160, 360, -30, 1, 0, 117649, -100842, 36015, -6860, 735, -42, 1, 0, -2097152, 1835008, -688128, 143360, -17920, 1344, -56, 1, 0, 43046721, -38263752, 14880348, -3306744, 459270, -40824, 2268, -72, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 18 2008

Keywords

Comments

Row sums give A177885.
The Abel polynomials are associated with the Abel operator t*exp(y*t)*p(x) = t*p(x+y).
From Peter Luschny, Jan 14 2009: (Start)
Abs(T(n,k)) is the number of rooted labeled trees on n+1 vertices with a root degree k (Clarke's formula).
The row sums in the unsigned case, Sum_{k=0..n} abs(T(n,k)), count the trees on n+1 labeled nodes, A000272(n+1). (End)
Exponential Riordan array [1, W(x)], W(x) the Lambert W-function. - Paul Barry, Nov 19 2010
The inverse array is the exponential Riordan array [1, x*exp(x)], which is A059297. - Peter Bala, Apr 08 2013
The inverse Bell transform of [1,2,3,...]. See A264428 for the Bell transform and A264429 for the inverse Bell transform. - Peter Luschny, Dec 20 2015
Also the Bell transform of (-1)^n*(n+1)^n. - Peter Luschny, Jan 18 2016

Examples

			Triangle begins:
  1;
  0,        1;
  0,       -2,       1;
  0,        9,      -6,       1;
  0,      -64,      48,     -12,      1;
  0,      625,    -500,     150,    -20,      1;
  0,    -7776,    6480,   -2160,    360,    -30,    1;
  0,   117649, -100842,   36015,  -6860,    735,  -42,   1;
  0, -2097152, 1835008, -688128, 143360, -17920, 1344, -56, 1;
		

References

  • Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 14 and 29

Crossrefs

Row sums A177885.
Cf. A000272, A061356, A059297 (inverse array), A264429.

Programs

  • Maple
    T := proc(n,k) if n = 0 and k = 0 then 1 else binomial(n-1,k-1)*(-n)^(n-k) fi end; seq(print(seq(T(n,k),k=0..n)),n=0..7); # Peter Luschny, Jan 14 2009
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> (-n-1)^n, 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    a0 = 1 a[x, 0] = 1; a[x, 1] = x; a[x_, n_] := x*(x - a0*n)^(n - 1); Table[Expand[a[x, n]], {n, 0, 10}]; a1 = Table[CoefficientList[a[x, n], x], {n, 0, 10}]; Flatten[a1]
    (* Second program: *)
    BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    B = BellMatrix[Function[n, (-n-1)^n], rows = 12];
    Table[B[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
  • Sage
    # uses[inverse_bell_transform from A264429]
    def A137452_matrix(dim):
        nat = [n for n in (1..dim)]
        return inverse_bell_transform(dim, nat)
    A137452_matrix(10) # Peter Luschny, Dec 20 2015

Formula

Row n gives the coefficients of the expansion of x*(x-n)^(n-1).
Abs(T(n,k)) = C(n-1,k-1)*n^(n-k). - Peter Luschny, Jan 14 2009
From Wolfdieter Lang, Nov 08 2022: (Start)
From the exponential Riordan (also Sheffer of Jabotinsky) type (1, LambertW) array (see comments).
E.g.f. of column sequence k, LambertW(x)^k/k!, for k >= 0.
E.g.f. of row polynomials P_n(y) = Sum_{k=0..n} T(n, k)*y^k: exp(y*LambertW(x)).
Recurrence for T: T(n, k) = 0 for n < k; T(n, 0) = 1 for n = 0 otherwise 0; T(n, k) = (n/k)*Sum_{j=0..n-k} binomial(k-1+j,k-1)*(-1)^j*T(n-1, k-1+j). (Jabotinsky type convolution triangle, the e.g.f.s for the a- and z-sequences are exp(-x), and 0. See the link in A006232.)
Recurrence for column k of T: T(n, k) = 0 for n < k, T(k, k) = 1, for k >= 0 otherwise T(n, k) = (n!*k/(n-k))*Sum_{j=k..n-1} (1/j!)*beta(n-1-j)*T(j, k), where beta(n) = A264234(n+1)/A095996(n+1) = {-1, 2, -9/2, 32/3, -625/24, ...} with o.g.f. d/dx(log(LambertW(x)/x)). See the Boas-Buck or Rainville references given in A046521, and my Aug 10 2017 comment there.
Recurrence for the row polynomials P_0(x) = 1, and P_n(x) = x*substitute(z=d/dx, exp(-z)/(1+z)) P_(n-1)(x), for n >= 1, with coefficient z^k of exp(-z)/(1+z) given by (-1)^k*A061354(k)/A061355(k). See the Roman reference Corollary 3.7.2., p. 50. (End)
The column sequences for the unsigned triangle Abs(T(n, k)), for k >= 2, are also given by {n^(n-k)*(n-1)*s(k-2, n)/(k-1)!}A049444.%20-%20_Wolfdieter%20Lang">{n>=k} with the row polynomials s(n, x) = risingfactorial(x - (n+1), n) of A049444. - _Wolfdieter Lang, Nov 21 2022

Extensions

Better name by Peter Bala, Apr 08 2013
Edited by Joerg Arndt, Apr 08 2013

A357247 E.g.f. satisfies A(x) * log(A(x)) = x * exp(-x).

Original entry on oeis.org

1, 1, -3, 13, -103, 1241, -19691, 384805, -8918351, 238966705, -7265920339, 247123552061, -9295263915191, 383095792217737, -17167554097899323, 831082449069928021, -43221681697593767071, 2403219105771778162529, -142263939562414917333155
Offset: 0

Views

Author

Seiichi Manyama, Sep 19 2022

Keywords

Crossrefs

Cf. A177885, A216857, A357243, A357246, A359759 (column 1).

Programs

  • Maple
    A357247 := n -> (-1)^(n - 1) * add(binomial(n, j) * (j - 1)^(j - 1) * j^(n - j), j = 0..n): seq(A357247(n), n = 0..18); # Peter Luschny, Jan 28 2023
  • Mathematica
    nmax = 20; A[_] = 1;
    Do[A[x_] = Exp[x/(Exp[x]*A[x])] + O[x]^(nmax+1) // Normal, {nmax}];
    CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-k+1)^(k-1)*(x*exp(-x))^k/k!)))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(x*exp(-x)))))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(x*exp(-x)/lambertw(x*exp(-x))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, sum(k=1, j, (-k)^(j-1)*binomial(j, k))*binomial(i-1, j-1)*v[i-j+1])); v;

Formula

E.g.f. satisfies A(x) * log(A(x)) - x * exp(-x) = 0.
E.g.f.: A(x) = Sum_{k>=0} (-k+1)^(k-1) * (x * exp(-x))^k / k!.
E.g.f.: A(x) = exp( LambertW(x * exp(-x)) ).
E.g.f.: A(x) = x * exp(-x)/LambertW(x * exp(-x)).
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k-1) * A216857(k) * binomial(n-1,k-1) * a(n-k).
a(n) = (-1)^(n - 1) * Sum_{j=0..n} binomial(n, j) * (j - 1)^(j - 1) * j^(n - j). - Peter Luschny, Jan 28 2023
a(n) ~ -(-1)^n * sqrt(1 + LambertW(exp(-1))) * n^(n-1) / (exp(n+1) * LambertW(exp(-1))^n). - Vaclav Kotesovec, Jan 28 2023

A273061 Nearest integer to the França-Leclair approximation 2*Pi*(n - 11/8)/LambertW((n - 11/8)/exp(1)) of the Riemann zeta zeros.

Original entry on oeis.org

15, 21, 25, 30, 34, 37, 41, 44, 47, 50, 53, 56, 59, 62, 64, 67, 70, 72, 75, 77, 80, 82, 85, 87, 90, 92, 94, 97, 99, 101, 103, 106, 108, 110, 112, 114, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 142, 144, 146, 148, 150, 151, 153, 155, 157, 159, 161, 163
Offset: 1

Views

Author

Mats Granvik, May 14 2016

Keywords

Comments

This sequence is also the nearest integer to the n-th point t on the critical line such that Re(zeta(1/2+i*t))=0 and such that Im(zeta(1/2+i*t)) is not equal to zero, when excluding t=0.819545... Verified for the first 10000 cases. See Mathematica program for how to verify this.
Roger Bagula pointed out that the difference between the approximation and the points t, resembles a hyperbola.
Compare this sequence to the Gram points A002505.
The first point t such that Re(zeta(1/2+i*t))=0 and Im(zeta(1/2+i*t)) is not equal to zero, is: t(1)=14.5179196282622336505419642930... while for n=1 the França-Leclair approximation is 14.5213469530656281679750582094... This gives an error of 0.0034273248033... This decreases to 0.0003990193059... by n=10.

Crossrefs

Programs

  • Mathematica
    (*The nearest integer to the França-Leclair approximation*)
    Round[Table[2*Pi*(n - 11/8)/ProductLog[(n - 11/8)/Exp[1]], {n, 1, 60}]]
    (*The nearest integer to t such that Re(zeta(1/2+I*t))=0 while Im(zeta(1/2+I*t))=/0*)
    Round[x /. Table[FindRoot[Re[Zeta[1/2 + I*x]] == 0, {x, 2*Pi*Exp[1]*Exp[ProductLog[(n - 11/8)/Exp[1]]]}], {n, 1, 60}]]
    Clear[a, n, g]; a[n_] := g /. FindRoot[RiemannSiegelTheta[g] == Pi*(2*n - 1)/2, {g, 2*Pi*Exp[1]*Exp[ProductLog[(n - 11/8)/Exp[1]]]}]; a = Table[Round[a[n]], {n, 0, 60 - 1}] (* after Jean-François Alcover in A002505 *)
  • PARI
    a(n)=round(2*Pi*exp(lambertw((n-11/8)/exp(1))+1)) \\ Works for n > 1 on GP 2.8.0; Charles R Greathouse IV, May 15 2016
    
  • Sage
    R = RealField(100)
    a = lambda n: R(2*pi*(n - 11/8)/lambert_w((n - 11/8)/exp(1)))
    print([a(n).round() for n in (1..60)]) # Peter Luschny, May 19 2016

Formula

a(n) = round(2*Pi*(n - 11/8)/LambertW((n - 11/8)/exp(1))).
a(n) = round(2*Pi*exp(1)*exp(LambertW((n - 11/8)/exp(1)))). - Mats Granvik, Feb 27 2017
a(n) = round(2*Pi*exp(1 + LambertW((8*(n - 3/2) + 1)/(8*e)))) after the formula in MathWorld. - Mats Granvik, Feb 25 2017
For c = 1/2 the n-th complementary Gram point x is the fixed point solution to the iterative formula: x = 2*Pi*e*e^LambertW(((x/(2*Pi))*log(x/(2*Pi*e)) - c + n - 1 - RiemannSiegelTheta(x)/Pi)/e). - Mats Granvik, Jul 24 2017

A383991 Series expansion of the exponential generating function exp(-tridend(-x)) - 1 where tridend(x) = (1 - 3*x - sqrt(1-6*x+x^2)) / (4*x) (A001003).

Original entry on oeis.org

0, 1, -5, 49, -743, 15421, -407909, 13135165, -498874991, 21838772377, -1082819193029, 59983280191561, -3671752681190615, 246130081055714389, -17932045676505509093, 1410893903131294766101, -119227840965746009631839, 10769985399394862863318705
Offset: 0

Views

Author

Michael De Vlieger, May 16 2025

Keywords

Comments

The series -tridend(-x) is the inverse for the substitution of the series trias(x), given by the suspension of the Koszul dual of trias. - Bérénice Delcroix-Oger, May 28 2025

Crossrefs

Programs

  • Mathematica
    nn = 19; f[x_] := Exp[x] - 1;
    Range[0, nn]! * CoefficientList[Series[f[(1 + 3*x - Sqrt[1 + 6*x + x^2])/(4*x)], {x, 0, nn}], x]

A383995 Series expansion of the exponential generating function exp(ff6^!(x)) - 1 where ff6^!(x) = x * (1-3*x-x^2+x^3) / (1+3*x+x^2-x^3).

Original entry on oeis.org

0, 1, -11, 61, -215, -1559, 62941, -1371131, 26310481, -474554735, 7824076741, -98881279859, -176260664711, 87457412423161, -5077434546358355, 234510433823788501, -10016559114085864799, 413333665704129673249, -16704968283664639137899, 660340818239784197391325
Offset: 0

Views

Author

Michael De Vlieger, May 16 2025

Keywords

Comments

The series ff6^!(x) is the inverse for the substitution of the series ff6(x) (given by A231690), given by the suspension of the Koszul dual of FF6. - Bérénice Delcroix-Oger, May 28 2025

Crossrefs

Programs

  • Mathematica
    nn = 19; f[x_] := Exp[x] - 1;
    Range[0, nn]! * CoefficientList[Series[f[x*(1 - 3*x - x^2 + x^3)/(1 + 3*x + x^2 - x^3)], {x, 0, nn}], x]

A360193 a(n) = Sum_{k=0..n} (k-1)^(k-1) * binomial(n,k).

Original entry on oeis.org

-1, 0, 2, 9, 52, 445, 5166, 75019, 1300776, 26167257, 598577770, 15337224991, 435020120316, 13529095809541, 457727913937854, 16736043791509995, 657590281425958096, 27631245762003186865, 1236355641557737359570, 58689534518861119967287
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (k-1)^(k-1)*binomial(n, k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-exp(x+lambertw(-x))))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(x*exp(x)/lambertw(-x)))

Formula

E.g.f.: -exp(x + LambertW(-x)).
E.g.f.: x * exp(x) / LambertW(-x).
a(n) ~ exp(exp(-1)-1) * n^(n-1). - Vaclav Kotesovec, Mar 06 2023

A383992 Series expansion of the exponential generating function exp(arbustive(x)) - 1 where arbustive(x) = (log(1+x) - x^2) / (1+x).

Original entry on oeis.org

0, 1, -4, 3, 40, -330, 1626, -3150, -54592, 1060920, -13022280, 127171440, -889086648, -283184616, 179750627616, -4895777544840, 99124001788800, -1721513264431680, 25736021675994816, -292896125040673728, 639149345262276480, 106178474282318726400
Offset: 0

Views

Author

Michael De Vlieger, May 16 2025

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 21; f[x_] := Exp[x] - 1;
    Range[0, nn]! * CoefficientList[Series[f[(Log[1 + x] - x^2)/(1 + x)], {x, 0, nn}], x]

A383993 Series expansion of the exponential generating function exp(tridup^!(x)) - 1 where tridup^!(x) = x / ((1+x) * (1+2*x)).

Original entry on oeis.org

0, 1, -5, 25, -119, 301, 5611, -171275, 3574705, -68597639, 1282415131, -23479249199, 409082338105, -6146707844315, 46462772999371, 2072826643602541, -160983324879816479, 8004468391727017585, -352443295329194182085, 14817357881274444545161
Offset: 0

Views

Author

Michael De Vlieger, May 16 2025

Keywords

Comments

The series tridup^!(x) is the inverse for the substitution of the series tridup(x) (given by A001003), given by the suspension of the Koszul dual of tridup. - Bérénice Delcroix-Oger, May 28 2025

Crossrefs

Programs

  • Mathematica
    nn = 19; f[x_] := Exp[x] - 1;
    Range[0, nn]! * CoefficientList[Series[f[x/((1 + x)*(1 + 2*x))], {x, 0, nn}], x]

A383994 Series expansion of the exponential generating function exp(wnp^!(x)) - 1 where wnp^!(x) = log(1+x) - x^2/(1+x).

Original entry on oeis.org

0, 1, -2, 0, 12, -60, 240, -840, 1680, 15120, -332640, 4656960, -59209920, 735134400, -9098369280, 112345833600, -1365274310400, 15746578848000, -155630893017600, 762963647846400, 22567767443020800, -1126188650069683200, 35900904478389350400
Offset: 0

Views

Author

Michael De Vlieger, May 16 2025

Keywords

Comments

The series wnp^!(x) is the inverse for the substitution of the series wnp(x) (corresponding to A048172), given by the suspension of the Koszul dual of the WithoutNPosets operad. - Bérénice Delcroix-Oger, May 28 2025

Crossrefs

Programs

  • Mathematica
    nn = 22; f[x_] := Exp[x] - 1;
    Range[0, nn]! * CoefficientList[Series[f[Log[1 + x] - x^2/(1 + x)], {x, 0, nn}], x]
Showing 1-10 of 23 results. Next