A244116
Triangle read by rows: coefficients T(n,k) of a binomial decomposition of 1 as Sum_{k=0..n} T(n,k)*binomial(n,k).
Original entry on oeis.org
1, 0, 1, 0, 1, -1, 0, 1, -2, 4, 0, 1, -4, 12, -27, 0, 1, -8, 36, -108, 256, 0, 1, -16, 108, -432, 1280, -3125, 0, 1, -32, 324, -1728, 6400, -18750, 46656, 0, 1, -64, 972, -6912, 32000, -112500, 326592, -823543, 0, 1, -128, 2916, -27648, 160000, -675000, 2286144, -6588344, 16777216
Offset: 0
The first few rows of the triangle are:
1
0 1
0 1 -1
0 1 -2 4
0 1 -4 12 -27
0 1 -8 36 -108 256
...
Cf.
A244117,
A244118,
A244119,
A244120,
A244121,
A244122,
A244123,
A244124,
A244125,
A244126,
A244127,
A244128,
A244129,
A244130,
A244131,
A244132,
A244133,
A244134,
A244135,
A244136,
A244137,
A244138,
A244139,
A244140,
A244141,
A244142,
A244143.
-
A244116 := (n, j) -> (-1)^(j + 1) * j^(n - j) * (j - 1)^(j - 1):
for n from 0 to 9 do seq(A244116(n, k), k = 0..n) od; # Peter Luschny, Jan 28 2023
-
seq(nmax,b)={my(v,n,k,irow);
v = vector((nmax+1)*(nmax+2)/2);v[1]=1;
for(n=1,nmax,irow=1+n*(n+1)/2;v[irow]=0;
for(k=1,n,v[irow+k] = (1-k*b)^(k-1)*(k*b)^(n-k););
);return(v);}
a=seq(100,1);
A273954
E.g.f. satisfies: A(x) = Sum_{n>=0} x^n/n! * exp(n*x) * A(x)^n.
Original entry on oeis.org
1, 1, 5, 37, 393, 5481, 95053, 1975821, 47939601, 1330923601, 41629292181, 1448989481589, 55561575788953, 2327512861252281, 105767732851318749, 5182512561142513501, 272391086209524010017, 15287595381259195453089, 912525533175190887597349, 57726267762799335649572549
Offset: 0
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 37*x^3/3! + 393*x^4/4! + 5481*x^5/5! + 95053*x^6/6! + 1975821*x^7/7! + 47939601*x^8/8! + 1330923601*x^9/9! + 41629292181*x^10/10! + 1448989481589*x^11/11! + 55561575788953*x^12/12! +...
such that
A(x) = 1 + x*exp(x)*A(x) + x^2/2!*exp(2*x)*A(x)^2 + x^3/3!*exp(3*x)*A(x)^3 + x^4/4!*exp(4*x)*A(x)^4 + x^5/5!*exp(5*x)*A(x)^5 + x^6/6!*exp(6*x)*A(x)^6 +...
The logarithm of A(x) begins:
log(A(x)) = x + 4*x^2/2! + 24*x^3/3! + 224*x^4/4! + 2880*x^5/5! + 47232*x^6/6! + 942592*x^7/7! + 22171648*x^8/8! + 600698880*x^9/9! + 18422374400*x^10/10! +...+ A216857(n)*x^n/n! +...
which equals -LambertW(-x*exp(x)).
-
A273954 := n -> add(binomial(n, j) * j^(n - j) * (j + 1)^(j - 1), j = 0..n):
seq(A273954(n), n = 0..24); # Peter Luschny, Jan 29 2023
-
CoefficientList[Series[-LambertW[-x*E^x] / (x*E^x), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jun 23 2016 *)
-
{a(n) = my(A=1+x); for(i=1,n, A = sum(m=0,n,x^m/m!*exp(m*x +x*O(x^n))*A^m) ); n!*polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
-
x='x+O('x^50); Vec(serlaplace(-lambertw(-x*exp(x))/(x*exp(x)))) \\ G. C. Greubel, Nov 16 2017
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^(k-1)*(x*exp(x))^k/k!))) \\ Seiichi Manyama, Feb 08 2023
A380427
E.g.f. A(x) satisfies A(x) = exp( -x/A(x) * exp(x/A(x)) ).
Original entry on oeis.org
1, -1, -3, -19, -211, -3301, -66581, -1643587, -47986247, -1617313033, -61796668969, -2639583958111, -124635062782187, -6446216079166189, -362427406400015165, -22008570202561166491, -1435560535563493528591, -100100185675457848764433, -7430481272601559979203409
Offset: 0
A360465
E.g.f. satisfies A(x) = exp(x * exp(2*x) * A(x)).
Original entry on oeis.org
1, 1, 7, 64, 829, 14056, 295399, 7426252, 217637305, 7291538704, 275050426411, 11540336658676, 533224609095061, 26908386824872216, 1472691380336896399, 86892807951798473116, 5498668489586321670769, 371511527654280649783840
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x*exp(2*x)))))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(-lambertw(-x*exp(2*x))/(x*exp(2*x))))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^(k-1)*(x*exp(2*x))^k/k!)))
-
a(n) = sum(k=0, n, (2*k)^(n-k)*(k+1)^(k-1)*binomial(n, k));
A380406
E.g.f. satisfies A(x) = exp( 2 * x * exp(x) * A(x)^(1/2) ).
Original entry on oeis.org
1, 2, 12, 104, 1232, 18592, 342208, 7451264, 187631872, 5369721344, 172255038464, 6125052946432, 239195824279552, 10179739052908544, 469024768235192320, 23263095316577681408, 1235978286454556131328, 70040404736026578386944, 4217180561907991530176512
Offset: 0
A380407
E.g.f. satisfies A(x) = exp( 3 * x * exp(x) * A(x)^(1/3) ).
Original entry on oeis.org
1, 3, 21, 207, 2697, 43803, 854685, 19512615, 510977937, 15112457523, 498560461989, 18160560320895, 724240913035545, 31394996915447883, 1470245245400432685, 73987438021589516247, 3982389565847576723745, 228331703268783136636515, 13894569264190369648271157
Offset: 0
-
terms = 19; A[] = 0; Do[A[x] = Exp[3*x*Exp[x]*A[x]^(1/3)] + O[x]^terms // Normal, terms]; CoefficientList[A[x], x]Range[0,terms-1]! (* Stefano Spezia, Jun 14 2025 *)
-
a(n) = 3*sum(k=0, n, k^(n-k)*(k+3)^(k-1)*binomial(n, k));
A357246
E.g.f. satisfies A(x) * log(A(x)) = (1-x) * (exp(x) - 1).
Original entry on oeis.org
1, 1, -2, 5, -49, 497, -6926, 116510, -2325422, 53538315, -1397740279, 40792008435, -1316056239994, 46509292766172, -1786748828967402, 74139054468535061, -3304409577659864305, 157444695280699565069, -7986085592316390890618, 429645521271113815480246
Offset: 0
-
nmax = 19; A[_] = 1;
Do[A[x_] = Exp[-(((Exp[x]-1)*(x-1))/A[x])]+O[x]^(nmax+1)//Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 05 2024 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-k+1)^(k-1)*((1-x)*(exp(x)-1))^k/k!)))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(lambertw((1-x)*(exp(x)-1)))))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace((1-x)*(exp(x)-1)/lambertw((1-x)*(exp(x)-1))))
A359759
Table read by rows. T(n, k) = (-1)^(n - k) * Sum_{j=k..n} binomial(n, j) * A354794(j, k) * j^(n - j).
Original entry on oeis.org
1, 0, 1, 0, -3, 1, 0, 13, -9, 1, 0, -103, 79, -18, 1, 0, 1241, -905, 265, -30, 1, 0, -19691, 13771, -4290, 665, -45, 1, 0, 384805, -262885, 82621, -14630, 1400, -63, 1, 0, -8918351, 6007247, -1888362, 353381, -40390, 2618, -84, 1
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 0, 1;
[2] 0, -3, 1;
[3] 0, 13, -9, 1;
[4] 0, -103, 79, -18, 1;
[5] 0, 1241, -905, 265, -30, 1;
[6] 0, -19691, 13771, -4290, 665, -45, 1;
[7] 0, 384805, -262885, 82621, -14630, 1400, -63, 1;
[8] 0, -8918351, 6007247, -1888362, 353381, -40390, 2618, -84, 1;
[9] 0, 238966705, -159432369, 50110705, -9627702, 1206471, -96138, 4494, -108, 1;
-
T := (n, k) -> (-1)^(n - k)*add(binomial(n, j) * A354794(j, k) * j^(n - j), j = k..n): for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
A360466
E.g.f. satisfies A(x) = exp(2 * x * exp(x) * A(x)).
Original entry on oeis.org
1, 2, 16, 206, 3832, 93962, 2871820, 105355406, 4515648784, 221598121490, 12257187851284, 754703476252310, 51204818674338328, 3796079000648275226, 305328667748448560668, 26483633169003911205278, 2464307301750079915255840, 244872778601760932275686434
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-2*x*exp(x)))))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(-lambertw(-2*x*exp(x))/(2*x*exp(x))))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^(k-1)*(2*x*exp(x))^k/k!)))
-
a(n) = sum(k=0, n, 2^k*k^(n-k)*(k+1)^(k-1)*binomial(n, k));
Showing 1-9 of 9 results.
Comments