cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A244116 Triangle read by rows: coefficients T(n,k) of a binomial decomposition of 1 as Sum_{k=0..n} T(n,k)*binomial(n,k).

Original entry on oeis.org

1, 0, 1, 0, 1, -1, 0, 1, -2, 4, 0, 1, -4, 12, -27, 0, 1, -8, 36, -108, 256, 0, 1, -16, 108, -432, 1280, -3125, 0, 1, -32, 324, -1728, 6400, -18750, 46656, 0, 1, -64, 972, -6912, 32000, -112500, 326592, -823543, 0, 1, -128, 2916, -27648, 160000, -675000, 2286144, -6588344, 16777216
Offset: 0

Views

Author

Stanislav Sykora, Jun 21 2014

Keywords

Comments

T(n,k) = (1-k)^(k-1) * k^(n-k) for k>0, and T(n,0) = 0^n by convention.

Examples

			The first few rows of the triangle are:
  1
  0 1
  0 1 -1
  0 1 -2 4
  0 1 -4 12  -27
  0 1 -8 36 -108 256
  ...
		

Crossrefs

Programs

  • Maple
    A244116 := (n, j) -> (-1)^(j + 1) * j^(n - j) * (j - 1)^(j - 1):
    for n from 0 to 9 do seq(A244116(n, k), k = 0..n) od; # Peter Luschny, Jan 28 2023
  • PARI
    seq(nmax,b)={my(v,n,k,irow);
      v = vector((nmax+1)*(nmax+2)/2);v[1]=1;
      for(n=1,nmax,irow=1+n*(n+1)/2;v[irow]=0;
        for(k=1,n,v[irow+k] = (1-k*b)^(k-1)*(k*b)^(n-k););
      );return(v);}
      a=seq(100,1);

A273954 E.g.f. satisfies: A(x) = Sum_{n>=0} x^n/n! * exp(n*x) * A(x)^n.

Original entry on oeis.org

1, 1, 5, 37, 393, 5481, 95053, 1975821, 47939601, 1330923601, 41629292181, 1448989481589, 55561575788953, 2327512861252281, 105767732851318749, 5182512561142513501, 272391086209524010017, 15287595381259195453089, 912525533175190887597349, 57726267762799335649572549
Offset: 0

Views

Author

Paul D. Hanna, Jun 14 2016

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 5*x^2/2! + 37*x^3/3! + 393*x^4/4! + 5481*x^5/5! + 95053*x^6/6! + 1975821*x^7/7! + 47939601*x^8/8! + 1330923601*x^9/9! + 41629292181*x^10/10! + 1448989481589*x^11/11! + 55561575788953*x^12/12! +...
such that
A(x) = 1 + x*exp(x)*A(x) + x^2/2!*exp(2*x)*A(x)^2 + x^3/3!*exp(3*x)*A(x)^3 + x^4/4!*exp(4*x)*A(x)^4 + x^5/5!*exp(5*x)*A(x)^5 + x^6/6!*exp(6*x)*A(x)^6 +...
The logarithm of A(x) begins:
log(A(x)) = x + 4*x^2/2! + 24*x^3/3! + 224*x^4/4! + 2880*x^5/5! + 47232*x^6/6! + 942592*x^7/7! + 22171648*x^8/8! + 600698880*x^9/9! + 18422374400*x^10/10! +...+ A216857(n)*x^n/n! +...
which equals -LambertW(-x*exp(x)).
		

Crossrefs

Cf. A273953, A216857, A357247, A360176 (column 1 unsigned).

Programs

  • Maple
    A273954 := n -> add(binomial(n, j) * j^(n - j) * (j + 1)^(j - 1), j = 0..n):
    seq(A273954(n), n = 0..24); # Peter Luschny, Jan 29 2023
  • Mathematica
    CoefficientList[Series[-LambertW[-x*E^x] / (x*E^x), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jun 23 2016 *)
  • PARI
    {a(n) = my(A=1+x); for(i=1,n, A = sum(m=0,n,x^m/m!*exp(m*x +x*O(x^n))*A^m) ); n!*polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    x='x+O('x^50); Vec(serlaplace(-lambertw(-x*exp(x))/(x*exp(x)))) \\ G. C. Greubel, Nov 16 2017
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^(k-1)*(x*exp(x))^k/k!))) \\ Seiichi Manyama, Feb 08 2023

Formula

E.g.f.: -LambertW(-x*exp(x)) / (x*exp(x)). [corrected by Vaclav Kotesovec, Jun 23 2016]
E.g.f.: exp( L(x) ) where L(x) = -LambertW(-x*exp(x)) is the e.g.f. of A216857.
a(n) ~ sqrt(1+LambertW(exp(-1))) * n^(n-1) / (exp(n-1) * LambertW(exp(-1))^n). - Vaclav Kotesovec, Jun 23 2016
E.g.f.: A(x) = exp(x*exp(x)*A(x)). - Alexander Burstein, Aug 11 2018
From Peter Luschny, Jan 29 2023: (Start)
a(n) = Sum_{j=0..n} binomial(n, j) * j^(n - j) * (j + 1)^(j - 1).
a(n) = Sum_{k=0..n} (-1)^k*A161628(n, k).
a(n) = Sum_{k=0..n} (-1)^(n-k)*A244119(n, k). (End)

A380427 E.g.f. A(x) satisfies A(x) = exp( -x/A(x) * exp(x/A(x)) ).

Original entry on oeis.org

1, -1, -3, -19, -211, -3301, -66581, -1643587, -47986247, -1617313033, -61796668969, -2639583958111, -124635062782187, -6446216079166189, -362427406400015165, -22008570202561166491, -1435560535563493528591, -100100185675457848764433, -7430481272601559979203409
Offset: 0

Views

Author

Seiichi Manyama, Jan 24 2025

Keywords

Crossrefs

Formula

E.g.f.: 1/B(x), where B(x) is the e.g.f. of A162695.
a(n) = -Sum_{k=1..n} k^(n-k) * (n-1)^(k-1) * binomial(n,k) for n > 0.

A360465 E.g.f. satisfies A(x) = exp(x * exp(2*x) * A(x)).

Original entry on oeis.org

1, 1, 7, 64, 829, 14056, 295399, 7426252, 217637305, 7291538704, 275050426411, 11540336658676, 533224609095061, 26908386824872216, 1472691380336896399, 86892807951798473116, 5498668489586321670769, 371511527654280649783840
Offset: 0

Views

Author

Seiichi Manyama, Feb 08 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x*exp(2*x)))))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(-lambertw(-x*exp(2*x))/(x*exp(2*x))))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^(k-1)*(x*exp(2*x))^k/k!)))
    
  • PARI
    a(n) = sum(k=0, n, (2*k)^(n-k)*(k+1)^(k-1)*binomial(n, k));

Formula

E.g.f.: A(x) = exp( -LambertW(-x * exp(2*x)) ).
E.g.f.: A(x) = -LambertW(-x * exp(2*x)) / (x * exp(2*x)).
E.g.f.: A(x) = Sum_{k>=0} (k+1)^(k-1) * (x * exp(2*x))^k / k!.
a(n) = Sum_{k=0..n} (2*k)^(n-k) * (k+1)^(k-1) * binomial(n,k).
a(n) ~ sqrt(1+LambertW(2*exp(-1))) * 2^n * n^(n-1) / (exp(n-1) * LambertW(2*exp(-1))^n). - Vaclav Kotesovec, Feb 08 2023

A380406 E.g.f. satisfies A(x) = exp( 2 * x * exp(x) * A(x)^(1/2) ).

Original entry on oeis.org

1, 2, 12, 104, 1232, 18592, 342208, 7451264, 187631872, 5369721344, 172255038464, 6125052946432, 239195824279552, 10179739052908544, 469024768235192320, 23263095316577681408, 1235978286454556131328, 70040404736026578386944, 4217180561907991530176512
Offset: 0

Views

Author

Seiichi Manyama, Jan 23 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 2*sum(k=0, n, k^(n-k)*(k+2)^(k-1)*binomial(n, k));

Formula

E.g.f.: B(x)^2, where B(x) is the e.g.f. of A273954.
E.g.f.: A(x) = exp( -2*LambertW(-x * exp(x)) ).
a(n) = 2 * Sum_{k=0..n} k^(n-k) * (k+2)^(k-1) * binomial(n,k).
a(n) ~ 2 * sqrt(1 + LambertW(exp(-1))) * n^(n-1) / (exp(n-2) * LambertW(exp(-1))^n). - Vaclav Kotesovec, Aug 05 2025

A380407 E.g.f. satisfies A(x) = exp( 3 * x * exp(x) * A(x)^(1/3) ).

Original entry on oeis.org

1, 3, 21, 207, 2697, 43803, 854685, 19512615, 510977937, 15112457523, 498560461989, 18160560320895, 724240913035545, 31394996915447883, 1470245245400432685, 73987438021589516247, 3982389565847576723745, 228331703268783136636515, 13894569264190369648271157
Offset: 0

Views

Author

Seiichi Manyama, Jan 23 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 19; A[] = 0; Do[A[x] = Exp[3*x*Exp[x]*A[x]^(1/3)] + O[x]^terms // Normal, terms]; CoefficientList[A[x], x]Range[0,terms-1]! (* Stefano Spezia, Jun 14 2025 *)
  • PARI
    a(n) = 3*sum(k=0, n, k^(n-k)*(k+3)^(k-1)*binomial(n, k));

Formula

E.g.f.: B(x)^3, where B(x) is the e.g.f. of A273954.
E.g.f.: A(x) = exp( -3*LambertW(-x * exp(x)) ).
a(n) = 3 * Sum_{k=0..n} k^(n-k) * (k+3)^(k-1) * binomial(n,k).

A357246 E.g.f. satisfies A(x) * log(A(x)) = (1-x) * (exp(x) - 1).

Original entry on oeis.org

1, 1, -2, 5, -49, 497, -6926, 116510, -2325422, 53538315, -1397740279, 40792008435, -1316056239994, 46509292766172, -1786748828967402, 74139054468535061, -3304409577659864305, 157444695280699565069, -7986085592316390890618, 429645521271113815480246
Offset: 0

Views

Author

Seiichi Manyama, Sep 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 19; A[_] = 1;
    Do[A[x_] = Exp[-(((Exp[x]-1)*(x-1))/A[x])]+O[x]^(nmax+1)//Normal, {nmax}];
    CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 05 2024 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-k+1)^(k-1)*((1-x)*(exp(x)-1))^k/k!)))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(lambertw((1-x)*(exp(x)-1)))))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace((1-x)*(exp(x)-1)/lambertw((1-x)*(exp(x)-1))))

Formula

E.g.f.: A(x) = Sum_{k>=0} (-k+1)^(k-1) * ((1-x) * (exp(x) - 1))^k / k!.
E.g.f.: A(x) = exp( LambertW((1-x) * (exp(x) - 1)) ).
E.g.f.: A(x) = (1-x) * (exp(x) - 1)/LambertW((1-x) * (exp(x) - 1)).

A359759 Table read by rows. T(n, k) = (-1)^(n - k) * Sum_{j=k..n} binomial(n, j) * A354794(j, k) * j^(n - j).

Original entry on oeis.org

1, 0, 1, 0, -3, 1, 0, 13, -9, 1, 0, -103, 79, -18, 1, 0, 1241, -905, 265, -30, 1, 0, -19691, 13771, -4290, 665, -45, 1, 0, 384805, -262885, 82621, -14630, 1400, -63, 1, 0, -8918351, 6007247, -1888362, 353381, -40390, 2618, -84, 1
Offset: 0

Views

Author

Peter Luschny, Jan 27 2023

Keywords

Comments

Inspired by a formula of Mélika Tebni in A048993.

Examples

			Triangle T(n, k) starts:
[0] 1;
[1] 0,         1;
[2] 0,        -3,          1;
[3] 0,        13,         -9,        1;
[4] 0,      -103,         79,      -18,        1;
[5] 0,      1241,       -905,      265,      -30,       1;
[6] 0,    -19691,      13771,    -4290,      665,     -45,      1;
[7] 0,    384805,    -262885,    82621,   -14630,    1400,    -63,    1;
[8] 0,  -8918351,    6007247, -1888362,   353381,  -40390,   2618,  -84,    1;
[9] 0, 238966705, -159432369, 50110705, -9627702, 1206471, -96138, 4494, -108, 1;
		

Crossrefs

Programs

  • Maple
    T := (n, k) -> (-1)^(n - k)*add(binomial(n, j) * A354794(j, k) * j^(n - j), j = k..n): for n from 0 to 9 do seq(T(n, k), k = 0..n) od;

Formula

E.g.f. of column k: (exp(LambertW(x*exp(-x))) - 1)^k / k!. (Note that (exp(-LambertW(-x*exp(-x))) - 1)^k / k! is the e.g.f. of column k of Stirling2.) - Mélika Tebni, Jan 27 2023

A360466 E.g.f. satisfies A(x) = exp(2 * x * exp(x) * A(x)).

Original entry on oeis.org

1, 2, 16, 206, 3832, 93962, 2871820, 105355406, 4515648784, 221598121490, 12257187851284, 754703476252310, 51204818674338328, 3796079000648275226, 305328667748448560668, 26483633169003911205278, 2464307301750079915255840, 244872778601760932275686434
Offset: 0

Views

Author

Seiichi Manyama, Feb 08 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-2*x*exp(x)))))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(-lambertw(-2*x*exp(x))/(2*x*exp(x))))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^(k-1)*(2*x*exp(x))^k/k!)))
    
  • PARI
    a(n) = sum(k=0, n, 2^k*k^(n-k)*(k+1)^(k-1)*binomial(n, k));

Formula

E.g.f.: A(x) = exp( -LambertW(-2 * x * exp(x)) ).
E.g.f.: A(x) = -LambertW(-2 * x * exp(x)) / (2 * x * exp(x)).
E.g.f.: A(x) = Sum_{k>=0} (k+1)^(k-1) * (2 * x * exp(x))^k / k!.
a(n) = Sum_{k=0..n} 2^k * k^(n-k) * (k+1)^(k-1) * binomial(n,k).
a(n) ~ sqrt(1+LambertW(exp(-1)/2)) * n^(n-1) / (exp(n-1) * LambertW(exp(-1)/2)^n). - Vaclav Kotesovec, Feb 08 2023
Showing 1-9 of 9 results.