A244119
Triangle read by rows: terms of a binomial decomposition of 1 as Sum(k=0..n)T(n,k).
Original entry on oeis.org
1, 0, 1, 0, -2, 3, 0, 3, -18, 16, 0, -4, 72, -192, 125, 0, 5, -240, 1440, -2500, 1296, 0, -6, 720, -8640, 30000, -38880, 16807, 0, 7, -2016, 45360, -280000, 680400, -705894, 262144, 0, -8, 5376, -217728, 2240000, -9072000, 16941456, -14680064, 4782969
Offset: 0
First rows of the triangle, all summing up to 1:
1
0 1
0 -2 3
0 3 -18 16
0 -4 72 -192 125
0 5 -240 1440 -2500 1296
Cf.
A161628,
A244116,
A244117,
A244118,
A244120,
A244121,
A244122,
A244123,
A244124,
A244125,
A244126,
A244127,
A244128,
A244129,
A244130,
A244131,
A244132,
A244133,
A244134,
A244135,
A244136,
A244137,
A244138,
A244139,
A244140,
A244141,
A244142,
A244143.
-
A244119 := (n, k) -> (1+k)^(k-1)*(-k)^(n-k)*binomial(n,k):
seq(seq(A244119(n, k), k = 0..n), n = 0..8); # Peter Luschny, Jan 29 2023
-
seq(nmax,b)={my(v,n,k,irow);
v = vector((nmax+1)*(nmax+2)/2);v[1]=1;
for(n=1,nmax,irow=1+n*(n+1)/2;v[irow]=0;
for(k=1,n,v[irow+k]=(1-k*b)^(k-1)*(k*b)^(n-k)*binomial(n,k););
);return(v);}
a=seq(100,-1);
A360473
E.g.f. satisfies A(x) = exp( x * exp(x) * A(x)^2 ).
Original entry on oeis.org
1, 1, 7, 82, 1441, 34036, 1013149, 36446698, 1538703457, 74607811048, 4086635087701, 249593193648646, 16819085803158577, 1239637405609740268, 99206330021667838285, 8567230421555333516746, 794104205843228382969409
Offset: 0
-
nmax = 20; A[_] = 1;
Do[A[x_] = Exp[x*Exp[x]*A[x]^2] + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
-
a(n) = sum(k=0, n, k^(n-k)*(2*k+1)^(k-1)*binomial(n, k));
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-2*x*exp(x))/2)))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sqrt(-lambertw(-2*x*exp(x))/(2*x*exp(x)))))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sqrt(sum(k=0, N, (k+1)^(k-1)*(2*x*exp(x))^k/k!))))
A273953
E.g.f. satisfies A(x) = Sum_{n>=0} x^n/n! * exp(n/2*x) * A(x)^(n/2).
Original entry on oeis.org
1, 1, 3, 13, 77, 581, 5347, 58213, 732937, 10487737, 168217811, 2990748509, 58397418037, 1242643927357, 28627000014355, 709933328752981, 18859531958840273, 534365880859577777, 16087267158157316323, 512844446937529664173, 17259468942471032848861, 611530055485070740134901, 22755171133646348369448323, 887228501593124485460914373, 36173480392953890421156056665, 1539307965110263598673884269801, 68247672532254821767545000249907
Offset: 0
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 13*x^3/3! + 77*x^4/4! + 581*x^5/5! + 5347*x^6/6! + 58213*x^7/7! + 732937*x^8/8! + 10487737*x^9/9! + 168217811*x^10/10! + 2990748509*x^11/11! + 58397418037*x^12/12! +...
such that
A(x) = 1 + x*exp(x/2)*A(x)^(1/2) + x^2/2!*exp(x)*A(x) + x^3/3!*exp(3*x/2)*A(x)^(3/2) + x^4/4!*exp(2*x)*A(x)^2 + x^5/5!*exp(5*x/2)*A(x)^(5/2) + x^6/6!*exp(3*x)*A(x)^3 +...
The logarithm of A(x) begins:
log(A(x)) = x + 2*x^2/2! + 6*x^3/3! + 28*x^4/4! + 180*x^5/5! + 1476*x^6/6! + 14728*x^7/7! + 173216*x^8/8! + 2346480*x^9/9! + 35981200*x^10/10! + 616111056*x^11/11! + 11652662880*x^12/12! +...+ A100526(n)*x^n/n! +...
which equals -2*LambertW(-x*exp(x/2)/2).
-
CoefficientList[Series[4*LambertW[-x/2*E^(x/2)]^2 / (x^2*E^x), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jun 23 2016 *)
-
{a(n) = my(A=1+x); for(i=1,n, A = sum(m=0,n,x^m/m!*exp(m/2*x +x*O(x^n))*A^(m/2)) ); n!*polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
-
a(n) = sum(k=0, n, k^(n-k)*(k+2)^(k-1)*binomial(n, k))/2^(n-1); \\ Seiichi Manyama, Feb 11 2023
A360547
E.g.f. satisfies A(x) = exp( x * ( exp(x) * A(x) )^2 ).
Original entry on oeis.org
1, 1, 9, 121, 2417, 64721, 2180665, 88719625, 4233968737, 231991022881, 14356691152361, 990506937621785, 75390334060230865, 6275675303410022641, 567191776288882702105, 55313848534122299876521, 5789703106014903009828545, 647414950001156861671249985
Offset: 0
-
nmax = 20; A[_] = 1;
Do[A[x_] = Exp[x*(Exp[x]*A[x])^2] + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-2*x*exp(2*x))/2)))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sqrt(-lambertw(-2*x*exp(2*x))/(2*x*exp(2*x)))))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sqrt(sum(k=0, N, (k+1)^(k-1)*(2*x*exp(2*x))^k/k!))))
-
a(n) = sum(k=0, n, (2*k)^(n-k)*(2*k+1)^(k-1)*binomial(n, k));
A360544
E.g.f. satisfies A(x) = exp( x * ( exp(x) * A(x) )^(3/2) ).
Original entry on oeis.org
1, 1, 7, 73, 1117, 22741, 580159, 17826985, 641494249, 26473635865, 1232945359111, 63978649829161, 3660871368065509, 229016870623703917, 15550838554432967647, 1139139301403727884521, 89544381521098908259729, 7518611017848248249471089
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-2*lambertw(-3/2*x*exp(3*x/2))/3)))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace((-lambertw(-3*x/2*exp(3*x/2))/(3*x/2*exp(3*x/2)))^(2/3)))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace((sum(k=0, N, (k+1)^(k-1)*(3*x/2*exp(3*x/2))^k/k!))^(2/3)))
-
a(n) = sum(k=0, n, (3*k)^(n-k)*(3*k+2)^(k-1)*binomial(n, k))/2^(n-1);
A161628
E.g.f.: A(x,y) = LambertW(x*y*exp(x))/(x*y*exp(x)), as a triangle of coefficients T(n,k) = [x^n*y^k/n! ] A(x,y), read by rows.
Original entry on oeis.org
1, 0, -1, 0, -2, 3, 0, -3, 18, -16, 0, -4, 72, -192, 125, 0, -5, 240, -1440, 2500, -1296, 0, -6, 720, -8640, 30000, -38880, 16807, 0, -7, 2016, -45360, 280000, -680400, 705894, -262144, 0, -8, 5376, -217728, 2240000, -9072000, 16941456, -14680064, 4782969
Offset: 0
Triangle begins:
1;
0, -1;
0, -2, 3;
0, -3, 18, -16;
0, -4, 72, -192, 125;
0, -5, 240, -1440, 2500, -1296;
0, -6, 720, -8640, 30000, -38880, 16807;
0, -7, 2016, -45360, 280000, -680400, 705894, -262144;
0, -8, 5376, -217728, 2240000, -9072000, 16941456, -14680064, 4782969;
0, -9, 13824, -979776, 16128000, -102060000, 304946208, -462422016, 344373768, -100000000; ...
-
A161628 := (n, k) -> (-1)^k*binomial(n, k)*(k+1)^(k-1)*k^(n-k):
seq(seq(A161628(n,k), k=0..n), n=0..8); # Peter Luschny, Jan 29 2023
-
Join[{1}, Table[(-1)^k*Binomial[n, k]*(k + 1)^(k - 1)*k^(n - k), {n, 1, 10}, {k, 0, n}]] // Flatten (* G. C. Greubel, Nov 09 2017 *)
-
{T(n,k)=(-1)^k*binomial(n,k)*(k+1)^(k-1)*k^(n-k)}
-
{T(n,k)=local(A,LW=serreverse(x*exp(x+x*O(x^n))));A=subst(LW/x,x,x*y*exp(x));n!*polcoeff(polcoeff(A,n,x),k,y)}
-
{T(n,k)=local(G=1+x);for(i=0,n,G=exp(x*y*exp(x*G+O(x^n))));n!*polcoeff(polcoeff(serreverse(x*G)/x,n,x),k,y)}
A360465
E.g.f. satisfies A(x) = exp(x * exp(2*x) * A(x)).
Original entry on oeis.org
1, 1, 7, 64, 829, 14056, 295399, 7426252, 217637305, 7291538704, 275050426411, 11540336658676, 533224609095061, 26908386824872216, 1472691380336896399, 86892807951798473116, 5498668489586321670769, 371511527654280649783840
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x*exp(2*x)))))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(-lambertw(-x*exp(2*x))/(x*exp(2*x))))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^(k-1)*(x*exp(2*x))^k/k!)))
-
a(n) = sum(k=0, n, (2*k)^(n-k)*(k+1)^(k-1)*binomial(n, k));
A362654
E.g.f. satisfies A(x) = exp( x * exp(x^2) * A(x) ).
Original entry on oeis.org
1, 1, 3, 22, 197, 2316, 33967, 595624, 12190761, 285479056, 7531645211, 221124649824, 7152276636397, 252742471065280, 9688895208298503, 400510408002257536, 17759663471017945553, 840937887639033467136, 42351198256293556043827
Offset: 0
A362656
E.g.f. satisfies A(x) = exp( x * exp(x) * A(x)^3 ).
Original entry on oeis.org
1, 1, 9, 145, 3569, 119041, 5025145, 256991953, 15448193633, 1067634195841, 83414064659561, 7270683884044945, 699503964027087697, 73631519384051331457, 8417768844410686595801, 1038658083084399115865041, 137579671405398060549801665
Offset: 0
A360176
Triangle read by rows. T(n, k) = Sum_{j=k..n} binomial(n, j) * (-j)^(n - j) * (-1)^(j - k)* A360177(j, k).
Original entry on oeis.org
1, 0, 1, 0, -5, 1, 0, 37, -15, 1, 0, -393, 223, -30, 1, 0, 5481, -3815, 745, -50, 1, 0, -95053, 76051, -18870, 1865, -75, 1, 0, 1975821, -1749811, 514381, -65730, 3920, -105, 1, 0, -47939601, 45876335, -15316854, 2358181, -183610, 7322, -140, 1
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 0, 1;
[2] 0, -5, 1;
[3] 0, 37, -15, 1;
[4] 0, -393, 223, -30, 1;
[5] 0, 5481, -3815, 745, -50, 1;
[6] 0, -95053, 76051, -18870, 1865, -75, 1;
[7] 0, 1975821, -1749811, 514381, -65730, 3920, -105, 1;
[8] 0, -47939601, 45876335, -15316854, 2358181, -183610, 7322, -140, 1;
-
T := (n, k) -> add(binomial(n, j) * (-j)^(n - j) * (-1)^(j - k) * A360177(j, k), j = k..n): for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
# Alternative:
egf := k -> (1 - exp(-LambertW(x*exp(-x))))^k / k!:
ser := k -> series(egf(k), x, 22): T := (n, k) -> n!*coeff(ser(k), x, n):
for n from 0 to 8 do seq(T(n, k), k = 0..n) od;
Showing 1-10 of 19 results.
Comments