A244116 Triangle read by rows: coefficients T(n,k) of a binomial decomposition of 1 as Sum_{k=0..n} T(n,k)*binomial(n,k).
1, 0, 1, 0, 1, -1, 0, 1, -2, 4, 0, 1, -4, 12, -27, 0, 1, -8, 36, -108, 256, 0, 1, -16, 108, -432, 1280, -3125, 0, 1, -32, 324, -1728, 6400, -18750, 46656, 0, 1, -64, 972, -6912, 32000, -112500, 326592, -823543, 0, 1, -128, 2916, -27648, 160000, -675000, 2286144, -6588344, 16777216
Offset: 0
Examples
The first few rows of the triangle are: 1 0 1 0 1 -1 0 1 -2 4 0 1 -4 12 -27 0 1 -8 36 -108 256 ...
Links
- Stanislav Sykora, Table of n, rows 0..100
- S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014. See eq.(4) with b=1.
Crossrefs
Programs
-
Maple
A244116 := (n, j) -> (-1)^(j + 1) * j^(n - j) * (j - 1)^(j - 1): for n from 0 to 9 do seq(A244116(n, k), k = 0..n) od; # Peter Luschny, Jan 28 2023
-
PARI
seq(nmax,b)={my(v,n,k,irow); v = vector((nmax+1)*(nmax+2)/2);v[1]=1; for(n=1,nmax,irow=1+n*(n+1)/2;v[irow]=0; for(k=1,n,v[irow+k] = (1-k*b)^(k-1)*(k*b)^(n-k);); );return(v);} a=seq(100,1);
Comments