A244119 Triangle read by rows: terms of a binomial decomposition of 1 as Sum(k=0..n)T(n,k).
1, 0, 1, 0, -2, 3, 0, 3, -18, 16, 0, -4, 72, -192, 125, 0, 5, -240, 1440, -2500, 1296, 0, -6, 720, -8640, 30000, -38880, 16807, 0, 7, -2016, 45360, -280000, 680400, -705894, 262144, 0, -8, 5376, -217728, 2240000, -9072000, 16941456, -14680064, 4782969
Offset: 0
Examples
First rows of the triangle, all summing up to 1: 1 0 1 0 -2 3 0 3 -18 16 0 -4 72 -192 125 0 5 -240 1440 -2500 1296
Links
- Stanislav Sykora, Table of n, a(n) for rows 0..100
- S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(4) with b=-1.
Crossrefs
Programs
-
Maple
A244119 := (n, k) -> (1+k)^(k-1)*(-k)^(n-k)*binomial(n,k): seq(seq(A244119(n, k), k = 0..n), n = 0..8); # Peter Luschny, Jan 29 2023
-
PARI
seq(nmax,b)={my(v,n,k,irow); v = vector((nmax+1)*(nmax+2)/2);v[1]=1; for(n=1,nmax,irow=1+n*(n+1)/2;v[irow]=0; for(k=1,n,v[irow+k]=(1-k*b)^(k-1)*(k*b)^(n-k)*binomial(n,k);); );return(v);} a=seq(100,-1);
Comments