cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 62 results. Next

A122526 Complement of A002410.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 39, 40, 42, 44, 45, 46, 47, 49, 51, 52, 54, 55, 57, 58, 60, 62, 63, 64, 66, 68, 69, 71, 73, 74, 75, 78, 80, 81, 82, 84, 86, 88, 90, 91, 93, 94, 97, 98, 100, 102, 103, 106
Offset: 1

Views

Author

N. J. A. Sloane, Sep 18 2006

Keywords

Comments

The number of terms is finite (but large).

Crossrefs

A162774 14 together with the first differences of A002410.

Original entry on oeis.org

14, 7, 4, 5, 3, 5, 3, 2, 5, 2, 3, 3, 3, 2, 4, 2, 3, 2, 4, 1, 2, 4, 2, 2, 2, 3, 3, 1, 3, 2, 3, 1, 2, 4, 1, 2, 2, 3, 2, 2, 1, 4, 2, 1, 2, 2, 3, 2, 1, 2, 3, 1, 3, 1, 2, 3, 2, 1, 2, 2, 3, 1, 2, 1, 3, 2, 1, 2, 2, 2, 3, 1, 1, 2, 3, 1, 2, 2, 1, 3, 1, 2, 1, 3, 2, 2, 1, 2, 1, 3, 2, 0, 3, 1, 2, 2, 2, 1, 2, 3, 1, 2, 1, 2, 1, 3
Offset: 1

Views

Author

Omar E. Pol, Jul 13 2009

Keywords

Comments

This sequence is related to the Riemann zeta function (very similar to A161914).
All but finitely many terms of this sequence are 0. What is the largest n such that a(n) > 0? - Charles R Greathouse IV, Jul 16 2012

Crossrefs

Extensions

More terms (data table at A161914) from Hagen von Eitzen, Oct 03 2009
a(92)-a(105) corrected by Omar E. Pol, Oct 08 2009
Missing a(92)=0 inserted by Sean A. Irvine, Mar 03 2023

A162781 a(n) = A002410(n) - A162780(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1
Offset: 1

Views

Author

Omar E. Pol, Jul 13 2009

Keywords

Comments

This sequence is related to the Riemann zeta function.

Crossrefs

Extensions

More terms from Jinyuan Wang, Mar 02 2020

A131582 Concatenation of first n numbers of (A002410: Nearest integer to imaginary part of n-th zero of Riemann zeta function).

Original entry on oeis.org

14, 1421, 142125, 14212530, 1421253033, 142125303338, 14212530333841, 1421253033384143, 142125303338414348, 14212530333841434850, 1421253033384143485053, 142125303338414348505356, 14212530333841434850535659, 1421253033384143485053565961
Offset: 1

Views

Author

Omar E. Pol, Sep 13 2007

Keywords

Crossrefs

See A002410 for more information.

Extensions

Offset corrected by Matthew House, Nov 01 2016

A134814 Concatenation of next n members of (A002410: Nearest integer to imaginary part of n-th zero of Riemann zeta function).

Original entry on oeis.org

14, 2125, 303338, 41434850, 5356596165, 677072767779, 83858789929596, 99101104105107111112114, 116119121123124128130131133, 135138140141143146147150151153, 156158159161163166167169170173175
Offset: 1

Views

Author

Omar E. Pol, Nov 30 2007

Keywords

Crossrefs

A013629 Floor of imaginary parts of nontrivial zeros of Riemann zeta function.

Original entry on oeis.org

14, 21, 25, 30, 32, 37, 40, 43, 48, 49, 52, 56, 59, 60, 65, 67, 69, 72, 75, 77, 79, 82, 84, 87, 88, 92, 94, 95, 98, 101, 103, 105, 107, 111, 111, 114, 116, 118, 121, 122, 124, 127, 129, 131, 133, 134, 138, 139, 141, 143, 146, 147, 150, 150, 153, 156, 157, 158, 161
Offset: 1

Views

Author

John Morrison (John.Morrison(AT)armltd.co.uk)

Keywords

Examples

			The imaginary parts of the first 4 zeros are 14.134725... (A058303), 21.0220396... (A065434), 25.01085758... (A065452), 30.424876... (A065453). Therefore the sequence starts: 14, 21, 25, 30, ..., as does A002410 (rounded values; main entry). But the 5th, 6th and 7th values are 32.935... (A192492), 37.586... (A305741), 40.9187... (A305742), whence a(n) = A002410(n)-1 and A002410 = A092783 (ceiling) for these. - _M. F. Hasler_, Nov 23 2018
		

References

  • H. M. Edwards, Riemann's Zeta Function, Academic Press, NY, 1974, p. 96.
  • C. B. Haselgrove and J. C. P. Miller, Tables of the Riemann Zeta Function. Royal Society Mathematical Tables, Vol. 6, Cambridge Univ. Press, 1960, p. 58.

Crossrefs

Cf. A002410 (rounded values: main entry), A092783 (ceiling).
Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1), A065434 (k=2), A065452 (k=3), A065453 (k=4), A192492 (k=5), A305741 (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).

Programs

Formula

a(n) ~ 2*Pi*n/log n. - Charles R Greathouse IV, Jun 30 2011
a(n) ~ (2*Pi*e) * e^(W0(n/e)), where W0 is the principal branch of Lambert's W function. - Hal M. Switkay, Oct 04 2021
a(n) = A092783(n) - 1. - M. F. Hasler, Nov 23 2018

Extensions

Edited by Daniel Forgues, Jun 30 2011
Definition corrected by Jonathan Sondow, Sep 18 2011

A058303 Decimal expansion of the imaginary part of the first nontrivial zero of the Riemann zeta function.

Original entry on oeis.org

1, 4, 1, 3, 4, 7, 2, 5, 1, 4, 1, 7, 3, 4, 6, 9, 3, 7, 9, 0, 4, 5, 7, 2, 5, 1, 9, 8, 3, 5, 6, 2, 4, 7, 0, 2, 7, 0, 7, 8, 4, 2, 5, 7, 1, 1, 5, 6, 9, 9, 2, 4, 3, 1, 7, 5, 6, 8, 5, 5, 6, 7, 4, 6, 0, 1, 4, 9, 9, 6, 3, 4, 2, 9, 8, 0, 9, 2, 5, 6, 7, 6, 4, 9, 4, 9, 0, 1, 0, 3, 9, 3, 1, 7, 1, 5, 6, 1, 0, 1, 2, 7, 7, 9, 2
Offset: 2

Views

Author

Robert G. Wilson v, Dec 08 2000

Keywords

Comments

"The Riemann Hypothesis, considered by many to be the most important unsolved problem of mathematics, is the assertion that all of zeta's nontrivial zeros line up with the first two all of which lie on the line 1/2 + sqrt(-1)*t, which is called the critical line. It is known that the hypothesis is obeyed for the first billion and a half zeros." (Wagon)
We can compute 105 digits of this zeta zero as the numerical integral: gamma = Integral_{t=0..gamma+15} (1/2)*(1 - sign((RiemannSiegelTheta(t) + Im(log(zeta(1/2 + i*t))))/Pi - n + 3/2)) where n=1 and where the initial value of gamma = 1. The upper integration limit is arbitrary as long as it is greater than the zeta zero computed recursively. The recursive formula fails at zeta zeros with indices n equal to sequence A153815. - Mats Granvik, Feb 15 2017

Examples

			14.1347251417346937904572519835624702707842571156992...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.15.3, p. 138.
  • S. Wagon, "Mathematica In Action," W. H. Freeman and Company, NY, 1991, page 361.

Crossrefs

Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1: this), A065434 (k=2), A065452 (k=3), A065453 (k=4), A192492 (k=5), A305741 (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).
Cf. A002410 (round), A013629 (floor); A057641, A057640, A058209, A058210.

Programs

  • Maple
    Digits:= 150; Re(fsolve(Zeta(1/2+I*t)=0, t=14.13)); # Iaroslav V. Blagouchine, Jun 24 2016
  • Mathematica
    FindRoot[ Zeta[1/2 + I*t], {t, 14 + {-.3, +.3}}, AccuracyGoal -> 100, WorkingPrecision -> 120]
    RealDigits[N[Im[ZetaZero[1]], 100]][[1]] (* Charles R Greathouse IV, Apr 09 2012 *)
    (* The following numerical integral takes about 9 minutes to compute *)Clear[n, t, gamma]; gamma = 1; numberofzetazeros = 1; Quiet[Do[gamma = N[NIntegrate[(1/2)*(1 - Sign[(RiemannSiegelTheta[t] + Im[Log[Zeta[I*t + 1/2]]])/Pi - n + 3/2]), {t, 0, gamma + 15}, PrecisionGoal -> 110, MaxRecursion -> 350, WorkingPrecision -> 120], 105]; Print[gamma], {n, 1, numberofzetazeros}]]; RealDigits[gamma][[1]] (* Mats Granvik, Feb 15 2017 *)
  • PARI
    solve(x=14,15,imag(zeta(1/2+x*I))) \\ Charles R Greathouse IV, Feb 26 2012
    
  • PARI
    lfunzeros(1,15)[1] \\ Charles R Greathouse IV, Mar 07 2018

Formula

zeta(1/2 + i*14.1347251417346937904572519836...) = 0.

A074760 Decimal expansion of lambda(1) in Li's criterion.

Original entry on oeis.org

0, 2, 3, 0, 9, 5, 7, 0, 8, 9, 6, 6, 1, 2, 1, 0, 3, 3, 8, 1, 4, 3, 1, 0, 2, 4, 7, 9, 0, 6, 4, 9, 5, 2, 9, 1, 6, 2, 1, 9, 3, 2, 1, 2, 7, 1, 5, 2, 0, 5, 0, 7, 5, 9, 5, 2, 5, 3, 9, 2, 0, 7, 2, 2, 1, 2, 9, 7, 1, 3, 5, 6, 4, 7, 6, 7, 2, 4, 5, 7, 9, 9, 7, 0, 7, 9, 8, 5, 6, 9, 5, 1, 1, 7, 0, 9, 8, 3, 3, 3, 6, 4, 3, 0
Offset: 0

Views

Author

Benoit Cloitre, Sep 28 2002

Keywords

Comments

Decimal expansion of -B =(1/2)*sum(r in Z, 1/r/(1-r)) where Z is the set of zeros of the Riemann zeta function which lie in the strip 0 <= Re(z) <= 1.
According to Gun, Murty, & Rath (2018), it is not even known whether this constant is rational or not (though see Theorem 3.1), though they show that it is transcendental under Schanuel’s conjecture. - Charles R Greathouse IV, Nov 12 2021

Examples

			0.023095708966121033814310247906495291621932127152050759525392...
		

References

  • H. M. Edwards, Riemann's Zeta Function, Dover Publications Inc. 1974, p. 160.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 1.6.2, 2.21, and 2.32, pp. 42, 168, 204.
  • S. J. Patterson, "An introduction to the theory of the Riemann Zeta-function", Cambridge Studies in Advanced Mathematics 14, p. 34.

Crossrefs

Cf. A002410 (nearest integer to imaginary part of n-th zeta zero), A195423 (twice the constant).
Cf. A104539 (lambda_2), A104540 (lambda_3), A104541 (lambda_4), A104542 (lambda_5).
Cf. A306339 (lambda_6), A306340 (lambda_7), A306341 (lambda_8).

Programs

  • Mathematica
    RealDigits[EulerGamma/2 + 1 - Log[4 Pi]/2, 10, 110][[1]]
  • PARI
    Euler/2+1-log(4*Pi)/2 \\ Charles R Greathouse IV, Jan 26 2012

Formula

-B = Gamma/2 + 1 - log(4*Pi)/2 = 0.0230957...

Extensions

Name simplified by Eric W. Weisstein, Feb 08 2019

A065434 Decimal expansion of imaginary part of 2nd nontrivial zero of Riemann zeta function.

Original entry on oeis.org

2, 1, 0, 2, 2, 0, 3, 9, 6, 3, 8, 7, 7, 1, 5, 5, 4, 9, 9, 2, 6, 2, 8, 4, 7, 9, 5, 9, 3, 8, 9, 6, 9, 0, 2, 7, 7, 7, 3, 3, 4, 3, 4, 0, 5, 2, 4, 9, 0, 2, 7, 8, 1, 7, 5, 4, 6, 2, 9, 5, 2, 0, 4, 0, 3, 5, 8, 7, 5, 9, 8, 5, 8, 6, 0, 6, 8, 8, 9, 0, 7, 9, 9, 7, 1, 3, 6, 5, 8, 5, 1, 4, 1, 8, 0, 1, 5, 1, 4
Offset: 2

Views

Author

N. J. A. Sloane, Nov 24 2001

Keywords

Examples

			The zero is at 1/2 + i*21.0220396387715549926284795938969...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.15.3, p. 138.

Crossrefs

Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1), A065434 (k=2: this), A065452 (k=3), A065453 (k=4), A192492 (k=5), A305741 (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).
Cf. A002410 (round), A013629 (floor).

Programs

A065452 Decimal expansion of imaginary part of 3rd nontrivial zero of Riemann zeta function.

Original entry on oeis.org

2, 5, 0, 1, 0, 8, 5, 7, 5, 8, 0, 1, 4, 5, 6, 8, 8, 7, 6, 3, 2, 1, 3, 7, 9, 0, 9, 9, 2, 5, 6, 2, 8, 2, 1, 8, 1, 8, 6, 5, 9, 5, 4, 9, 6, 7, 2, 5, 5, 7, 9, 9, 6, 6, 7, 2, 4, 9, 6, 5, 4, 2, 0, 0, 6, 7, 4, 5, 0, 9, 2, 0, 9, 8, 4, 4, 1, 6, 4, 4, 2, 7, 7, 8, 4, 0, 2, 3, 8, 2, 2, 4, 5, 5, 8, 0, 6, 2, 4
Offset: 2

Views

Author

N. J. A. Sloane, Nov 24 2001

Keywords

Comments

See A002410 and A058303 for more information.

Examples

			The zero is at 1/2 + i * 25.01085758014568876321379099256282181865954967...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.15.3, p. 138.

Crossrefs

Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1), A065434 (k=2), A065452 (k=3: this), A065453 (k=4), A192492 (k=5), A305741 (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).
Cf. A002410 (these values rounded to nearest integer), A013629 (floor), A092783 (ceiling).

Programs

Extensions

Minor edits by M. F. Hasler, Nov 23 2018
Showing 1-10 of 62 results. Next