cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A002410 Nearest integer to imaginary part of n-th zero of Riemann zeta function.

Original entry on oeis.org

14, 21, 25, 30, 33, 38, 41, 43, 48, 50, 53, 56, 59, 61, 65, 67, 70, 72, 76, 77, 79, 83, 85, 87, 89, 92, 95, 96, 99, 101, 104, 105, 107, 111, 112, 114, 116, 119, 121, 123, 124, 128, 130, 131, 133, 135, 138, 140, 141, 143, 146, 147, 150, 151, 153, 156, 158, 159, 161
Offset: 1

Views

Author

Keywords

Comments

"All these zeros of the form s + it have real part s = 1/2 and are simple. Thus the Riemann hypothesis is true at least for t < 3330657430697." - Wedeniwski
From Daniel Forgues, Jul 24 2009: (Start)
All nontrivial zeros on the critical line, of the form 1/2 + i*t, have an associated conjugate nontrivial zero of the form 1/2 - i*t.
Any nontrivial zeros off the critical line, if ever found, would come in pairs (1/2 +- delta) + i*t, 0 < delta < 1/2. Each of these pairs, again if ever found, would then have their associated conjugate pair (1/2 +- delta) - i*t, 0 < delta < 1/2. (End)
The sequence is not strictly increasing. - Joerg Arndt, Jan 17 2015
The fraction of numbers n such that a(n) = a(n-1) has density 1. There are only finitely many numbers n with a(n) > a(n-1) + 1, see A208436. - Charles R Greathouse IV, Mar 07 2018
Conjecture: Noninteger rationals of the form m/2^bigomega(m) that can be used to approximate this sequence, i.e. a(n) ~~ 2*Pi*A374074(n)/2^bigomega(A374074(n)) - n/2 +- (...), where '~~' means 'close to'. - Friedjof Tellkamp, Jul 04 2024

Examples

			The imaginary parts of the first 4 zeros are 14.134725... (A058303), 21.0220396... (A065434), 25.01085758... (A065452), 30.424876... (A065453).
		

References

  • Gregory Benford, Gravity's whispers, Futures Column, Nature, 446 (Jul 15 2010), p. 406. [Gravity waves are detected on Earth that turn out to contain a list of the zeros of the Riemann zeta function, essentially this sequence]
  • E. Bombieri, "The Riemann Hypothesis" in 'The Millennium Prize Problems' Chap. 7 pp. 107-128 Eds: J. Carlson, A. Jaffe & A. Wiles, Amer. Math. Soc. Providence RI 2006.
  • P. Borwein et al., The Riemann Hypothesis, Can. Math. Soc. (CMS) Ottawa ON 2007.
  • S. Chowla, Riemann Hypothesis and Hilbert's Tenth Problem, Mathematics and Its Application Series Vol. 4, Taylor & Francis NY 1965.
  • J. Derbyshire, Prime Obsession, Penguin Books 2004.
  • K. Devlin, The Millennium Problems, Chapter 1 (pp. 19-62) Basic Books NY 2002.
  • M. du Sautoy, The Music of the Primes, Fourth Estate/HarperCollins NY 2003.
  • H. M. Edwards, Riemann's Zeta Function, Academic Press, NY, 1974, p. 96.
  • C. B. Haselgrove and J. C. P. Miller, Tables of the Riemann Zeta Function. Royal Society Mathematical Tables, Vol. 6, Cambridge Univ. Press, 1960, p. 58.
  • A. Ivic, The Riemann Zeta-Function: Theory and Applications, Dover NY 2003.
  • D. S. Jandu, Riemann Hypothesis and Prime Number Theorem, Infinite Bandwidth Publishing, N. Hollywood CA 2006.
  • A. A. Karatsuba & S. M. Voronin, The Riemann Zeta-Function, Walter de Gruyter, Berlin 1992.
  • G. Lachaud, "L'hypothèse de Riemann" in La Recherche No.346 October 2001 pp. 24-30 (or Les Dossiers de La Recherche No. Aug 20 2005 pp. 26-35) Paris.
  • M. L. Lapidus, In Search of the Riemann Zeros, Amer. Math. Soc. (AMS) Providence RI 2008.
  • P. Meier & J. Steuding, "L'hypothèse de Riemann" in 'Pour la Science' (French Edition of 'Scientific American') pp 22-9, March 2009, Issue No. 377, Paris.
  • P. Odifreddi, The Mathematical Century, Chapter 5.2, p. 168, Princeton Univ. Press NJ 2004.
  • S. J. Patterson, An Introduction to the Theory of the Riemann Zeta-Function, Cambridge Univ. Press, UK 1995.
  • D. N. Rockmore, Stalking the Riemann Hypothesis, Jonathan Cape UK 2005.
  • K. Sabbagh, The Riemann Hypothesis, Farrar Straus Giroux NY 2003.
  • K. Sabbagh, Dr. Riemann's Zeros, Atlantic Books London 2003.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon Press NY 1986.

Crossrefs

Cf. A013629 (floor), A092783 (ceiling), A057641, A057640, A058209, A058210, A120401, A122526, A072080, A124288 ("unstable" zeta zeros), A124289 ("unstable twins"), A236212, A177885, A374074 (approximation).
Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1), A065434 (k=2), A065452 (k=3), A065453 (k=4), A192492 (k=5), A305741 (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).

Programs

Formula

a(n) ~ (2*Pi*e) * e^(W0(n/e)), where W0 is the principal branch of Lambert's W function. - Charles R Greathouse IV, Sep 14 2012, corrected by Hal M. Switkay, Oct 04 2021
a(n) ~ 2*Pi*(n - 11/8)/ProductLog((n - 11/8)/exp(1)). This is the asymptotic by Guilherme França and André LeClair. - Mats Granvik, Mar 10 2015; corrected May 16 2016

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 08 2004

A234800 First occurrence of n in A234323: Number of nontrivial zeros of the Riemann zeta function in the interval 1/2 + i[n,n+1).

Original entry on oeis.org

1, 14, 111, 5826, 85865, 4580009, 290820868
Offset: 0

Views

Author

Keywords

Comments

k
0: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, ..., A120401
1: 14, 21, 25, 30, 32, 37, 40, 43, 48, 49, 52, 56, 59, 60, 65, ..., A234802
2: 111, 150, 169, 224, 231, 329, 357, 373, 415, 478, 493, 540, ..., A234803
3: 5826, 5978, 6494, 7563, 8106, 8942, 9601, 9856, 9976, 10000, ..., A234804
4: 85865, 193997, 245986, 276125, 283519, 297624, 298486, 311014, ..., A234805
5: 4580009, 7149902, 8120618, 10002309, 10597386, 11333337, 11432756, ..., A234806
6: 290820868, 317905108, 334924359, 386701579, 410462993, 430633085, ..., A234807
The occurrence of <0> is probably finite since the average height of a(n) is A234323 is log(n)/(2*Pi). This is a conjecture.

Crossrefs

Programs

  • Mathematica
    t = Table[0, {100}]; k = 1; cnt = 1; a = 0; t[[1]] = 14; While[k < 1000001, b = Floor[ Im[ N[ ZetaZero[ k]] ]]; If[b == a, cnt++; If[t[[cnt]] == 0, t[[cnt]] = b; Print[{cnt, b}]], cnt = 1]; a = b; k++]

A120401 Construct the sequence given by the floor of the imaginary part of zeros of the Riemann zeta function; take complement.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 23, 24, 26, 27, 28, 29, 31, 33, 34, 35, 36, 38, 39, 41, 42, 44, 45, 46, 47, 50, 51, 53, 54, 55, 57, 58, 61, 62, 63, 64, 66, 68, 70, 71, 73, 74, 76, 78, 80, 81, 83, 85, 86, 89, 90, 91, 93
Offset: 0

Views

Author

Jorge Coveiro, Jul 02 2006

Keywords

Comments

Complement to A013629. Similar to A002410 and A122526, which use "round" instead of "floor".

Examples

			The first zero is 14.13472.. so 0,1,2,3,4,5,6,7,8,9,10,11,12,13 are part of the sequence.
The second zero is 21.02203.. so 15,16,17,18,19,20 are in the sequence too.
The third zero is 25.0108.. so we get 22,23,24, etc.
		

Crossrefs

Programs

  • Mathematica
    l=94;Complement[Range[0,l],Table[Floor[Im[ZetaZero[n]]],{n,l}]] (* James C. McMahon, Oct 05 2024 *)

Extensions

a(54)-a(68) from James C. McMahon, Oct 05 2024
Showing 1-3 of 3 results.