cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Iaroslav V. Blagouchine

Iaroslav V. Blagouchine's wiki page.

Iaroslav V. Blagouchine has authored 67 sequences. Here are the ten most recent ones:

A302121 Denominators of a series converging to Euler's constant.

Original entry on oeis.org

4, 96, 72, 46080, 1152, 2322432, 100352, 7431782400, 2090188800, 2452488192000, 2697737011200, 64274810535936000, 2923954176000, 1799694695006208000, 3085190905724928, 33566877054287216640000, 4458100858772520960000, 120538655501945394954240000, 1057781497894797312000
Offset: 1

Author

Keywords

Comments

gamma = 3/4 - 11/96 - 1/72 - 311/46080 - 5/1152 - 7291/2322432 - ..., see formula (104) in the reference below.

Examples

			Denominators of 3/4, -11/96, -1/72, -311/46080, -5/1152, -7291/2322432, ...
		

Crossrefs

Cf. A302120 (numerators of this series), A262856, A262858.

Programs

  • Maple
    a := proc (n) options operator, arrow; denum((1/2)*(-1)^(n+1)*(sum(Stirling1(n-1, l)*((-1/2)^(l+1)+1)/(l+1), l = 0 .. n-1))/factorial(n)+(-1)^(n+1)*(sum(Stirling1(n, l)/(l+1), l = 1 .. n))/(n*factorial(n))) end proc
  • Mathematica
    a[n_] := Denominator[(1/2)*(-1)^(n+1)*(Sum[StirlingS1[n-1,l]*((-1/2)^(l+1) + 1)/(l+1),{l,0,n-1}])/(n!) + (-1)^(n+1)*(Sum[StirlingS1[n, l]/(l+1),{l,1,n}])/(n*n!)]; Table[a[n], {n, 1, 24}]
  • PARI
    a(n) = denominator((1/2)*(-1)^(n+1)*(sum(l=0,n-1,stirling(n-1,l)*((-1/2)^(l+1) + 1)/(l+1)))/(n!) + (-1)^(n+1)*(sum(l=1,n,stirling(n,l)/(l+1)))/(n*n!))

Formula

a(n) = Denominators of ((1/2)*(-1)^(n+1)*(Sum_{l=0..n-1} (S_1(n-1,l)*((-1/2)^(l+1) + 1)/(l+1)))/(n!) + (-1)^(n+1)*(Sum_{l=1..n} S_1(n,l)/(l+1)))/(n*n!)), where S_1(x,y) are the signed Stirling numbers of the first kind.

A302120 Absolute value of the numerators of a series converging to Euler's constant.

Original entry on oeis.org

3, 11, 1, 311, 5, 7291, 243, 14462317, 3364621, 3337014731, 3155743303, 65528247068741, 2627553901, 1439156737843967, 2213381206625, 21757704362231905789, 2627003970197650333, 64925181492079668050329, 523317843775891637, 161371847993975070290712761, 78461950306245817433389909
Offset: 1

Author

Keywords

Comments

gamma = 3/4 - 11/96 - 1/72 - 311/46080 - 5/1152 - 7291/2322432 - ..., see formula (104) in the reference below.

Examples

			Numerators of 3/4, -11/96, -1/72, -311/46080, -5/1152, -7291/2322432, ...
		

Crossrefs

Cf. A302121 (denominators of this series), A262856, A262858.

Programs

  • Magma
    [3] cat [Abs(Numerator( (1/2)*(-1)^(n+1)*(&+[StirlingFirst(n-1,k)*((-1/2)^(k+1) + 1)/(k+1): k in [1..n-1]])/Factorial(n) + (-1)^(n+1)*(&+[StirlingFirst(n,k)/(k+1): k in [1..n]])/(n*Factorial(n)) )): n in [2..30]]; // G. C. Greubel, Oct 29 2018
  • Maple
    a:= proc(n) abs(numer((1/2)*(-1)^(n+1)*(add(Stirling1(n-1, l)*((-1/2)^(l+1)+1)/(l+1), l = 0 .. n-1))/(n)!+(-1)^(n+1)*(add(Stirling1(n, l)/(l+1), l = 1 .. n))/(n*(n)!))) end proc: seq(a(n), n=1..23);
  • Mathematica
    a[n_] := Numerator[(1/2)*(-1)^(n+1)*(Sum[StirlingS1[n-1,l]*((-1/2)^(l+1) + 1)/(l+1),{l,0,n-1}])/(n!) + (-1)^(n+1)*(Sum[StirlingS1[n, l]/(l+1),{l,1,n}])/(n*n!)]; Table[Abs[a[n]], {n, 1, 24}]
  • PARI
    a(n) = abs(numerator((1/2)*(-1)^(n+1)*(sum(l=0,n-1,stirling(n-1,l)*((-1/2)^(l+1) + 1)/(l+1))) /(n!) + (-1)^(n+1)*(sum(l=1,n,stirling(n,l)/(l+1)))/(n*n!)))
    

Formula

a(n) = abs(Numerators of ((1/2)*(-1)^(n+1)*(Sum_{l=0,n-1} (S_1(n-1,l)*((-1/2)^(l+1) + 1)/(l+1)))/(n!) + (-1)^(n+1)*(Sum_{l=1,n} S_1(n,l)/(l+1)))/(n*n!))), where S_1(x,y) are the signed Stirling numbers of the first kind.

A300731 Decimal expansion of sqrt(Pi^4/96 - 1).

Original entry on oeis.org

1, 2, 1, 1, 5, 2, 9, 2, 6, 5, 1, 9, 3, 0, 4, 7, 4, 3, 3, 1, 4, 9, 7, 3, 8, 7, 4, 7, 4, 5, 3, 5, 2, 8, 5, 0, 9, 8, 8, 5, 9, 7, 5, 4, 4, 0, 5, 6, 8, 5, 3, 2, 4, 6, 6, 0, 6, 0, 3, 7, 5, 1, 2, 0, 8, 6, 8, 2, 8, 3, 0, 8, 1, 1, 3, 7, 6, 5, 3, 2, 6, 4, 3, 4, 7, 3, 8, 3, 8, 0, 6, 1, 5, 8, 5, 5, 0, 7, 9, 1, 5, 8, 2
Offset: 0

Author

Keywords

Comments

Also the total harmonic distortion (THD) of a triangle wave, see formula (14) in the Blagouchine & Moreau link.

Examples

			0.1211529265193047433149738747453528509885975440568532...
		

Programs

  • MATLAB
    format long; sqrt(pi^4/96-1)
  • Maple
    evalf(sqrt((1/96)*Pi^4-1), 120)
  • Mathematica
    RealDigits[Sqrt[Pi^4/96 - 1], 10, 120][[1]]
  • PARI
    default(realprecision, 120); sqrt(Pi^4/96-1)
    

A300714 Decimal expansion of the total harmonic distortion (THD) of the sawtooth signal filtered by a 1st-order low-pass filter.

Original entry on oeis.org

3, 6, 9, 4, 8, 6, 1, 8, 2, 0, 9, 5, 2, 0, 4, 3, 7, 3, 1, 2, 0, 0, 5, 4, 6, 9, 1, 4, 2, 3, 9, 7, 6, 9, 9, 3, 6, 6, 0, 2, 3, 6, 1, 5, 8, 6, 7, 9, 0, 8, 3, 8, 2, 5, 8, 9, 1, 6, 4, 9, 1, 8, 9, 0, 0, 1, 5, 1, 7, 9, 3, 1, 4, 2, 0, 0, 6, 6, 9, 9, 8, 3, 5, 0, 8, 2, 8, 4, 2, 5, 6, 1, 0, 2, 7, 6, 7, 4, 1, 8, 9, 8, 0
Offset: 0

Author

Keywords

Comments

See formula (33) in the Blagouchine & Moreau link.

Examples

			0.3694861820952043731200546914239769936602361586790838...
		

Crossrefs

Programs

  • MATLAB
    format long; sqrt(pi^2/3-pi*coth(pi))
  • Maple
    evalf(sqrt((1/3)*Pi^2-Pi*coth(Pi)), 120)
  • Mathematica
    RealDigits[Sqrt[Pi^2/3 - Pi*Coth[Pi]], 10, 120][[1]]
  • PARI
    default(realprecision, 120); sqrt(Pi^2/3-Pi/tanh(Pi))
    

Formula

Equals sqrt(Pi^2/3 - Pi*coth(Pi)).

A300713 Decimal expansion of sqrt(Pi^2/6 - 1) = sqrt(zeta(2) - 1).

Original entry on oeis.org

8, 0, 3, 0, 7, 7, 8, 7, 0, 9, 7, 4, 0, 5, 8, 4, 2, 8, 1, 8, 4, 3, 2, 1, 2, 4, 4, 6, 6, 9, 0, 3, 4, 8, 2, 3, 1, 8, 9, 8, 9, 1, 0, 9, 9, 6, 4, 0, 9, 6, 6, 1, 3, 6, 6, 2, 9, 8, 4, 3, 5, 0, 7, 2, 1, 4, 7, 9, 8, 3, 5, 6, 0, 5, 0, 9, 0, 4, 6, 4, 2, 0, 1, 0, 8, 2, 0, 8, 7, 6, 3, 8, 5, 8, 2, 6, 6, 5, 0, 6, 7, 3, 2
Offset: 0

Author

Keywords

Comments

Also the total harmonic distortion (THD) of a sawtooth signal, see formula (15) in the Blagouchine & Moreau link.

Examples

			0.8030778709740584281843212446690348231898910996409661...
		

Crossrefs

Programs

  • MATLAB
    format long; sqrt(pi^2/6-1)
  • Maple
    evalf(sqrt((1/6)*Pi^2-1), 120)
  • Mathematica
    RealDigits[Sqrt[Pi^2/6 - 1], 10, 120][[1]]
  • PARI
    default(realprecision, 120); sqrt(Pi^2/6-1)
    

Formula

Equals sqrt(A013661 - 1).

A300710 Decimal expansion of 17*Pi^8/161280.

Original entry on oeis.org

1, 0, 0, 0, 1, 5, 5, 1, 7, 9, 0, 2, 5, 2, 9, 6, 1, 1, 9, 3, 0, 2, 9, 8, 7, 2, 4, 9, 2, 9, 5, 7, 2, 8, 0, 4, 1, 5, 6, 6, 5, 4, 2, 9, 7, 5, 0, 6, 1, 3, 7, 4, 0, 4, 3, 6, 8, 7, 1, 9, 9, 6, 1, 5, 9, 2, 3, 4, 7, 1, 3, 0, 0, 4, 1, 6, 2, 5, 3, 7, 0, 1, 8, 3, 9, 0, 5, 5, 6, 3, 9, 6, 2, 8, 7, 2, 9, 8, 9, 3, 1, 1, 2
Offset: 1

Author

Keywords

Comments

Also the sum of the series Sum_{n>=0} (1/(2n+1)^8), whose value is obtained from zeta(8) given by L. Euler in 1735: Sum_{n>=0} (2n+1)^(-s)=(1-2^(-s))*zeta(s).

Examples

			1.0001551790252961193029872492957280415665429750613740...
		

Crossrefs

Programs

  • MATLAB
    format long; (17/161280)*pi^8
  • Maple
    evalf((17/161280)*Pi^8, 120);
  • Mathematica
    RealDigits[(17/161280)*Pi^8, 10, 120][[1]]
  • PARI
    default(realprecision, 120); (17/161280)*Pi^8
    

Formula

Equals 17*A092736/161280. - Omar E. Pol, Mar 11 2018
From Artur Jasinski, Jun 24 2025: (Start)
Equals DirichletL(2,1,8).
Equals DirichletL(4,1,8).
Equals DirichletL(8,1,8).
Equals DirichletL(16,1,8). (End)
Equals 255*Zeta(8)/256. - Jason Bard, Aug 21 2025

A300709 Decimal expansion of Pi^6/960.

Original entry on oeis.org

1, 0, 0, 1, 4, 4, 7, 0, 7, 6, 6, 4, 0, 9, 4, 2, 1, 2, 1, 9, 0, 6, 4, 7, 8, 5, 8, 7, 1, 3, 7, 9, 3, 7, 3, 9, 4, 6, 5, 3, 3, 5, 1, 5, 9, 1, 7, 5, 1, 0, 9, 0, 2, 2, 4, 9, 3, 8, 6, 2, 1, 0, 2, 8, 6, 2, 9, 2, 6, 4, 4, 9, 2, 5, 4, 4, 1, 1, 4, 8, 0, 5, 7, 2, 8, 3, 5, 5, 6, 3, 4, 5, 3, 3, 2, 4, 5, 5, 5, 8, 4, 9, 0
Offset: 1

Author

Keywords

Comments

Also the sum of the series Sum_{n>=0} (1/(2n+1)^6), whose value is obtained from zeta(6) given by L. Euler in 1735: Sum_{n>=0}(2n+1)^(-s) = (1-2^(-s))*zeta(s).

Examples

			1.0014470766409421219064785871379373946533515917510902...
		

Crossrefs

Programs

  • MATLAB
    format long; pi^6/960
  • Maple
    evalf((1/960)*Pi^6, 120)
  • Mathematica
    RealDigits[Pi^6/960, 10, 120][[1]]
  • PARI
    default(realprecision, 120); Pi^6/960
    

Formula

Equals A092732/960. - Omar E. Pol, Mar 11 2018
From Artur Jasinski, Jun 24 2025: (Start)
Equals DirichletL(2,1,6).
Equals DirichletL(4,1,6).
Equals DirichletL(8,1,6).
Equals DirichletL(16,1,6). (End)

A300707 Decimal expansion of Pi^4/96.

Original entry on oeis.org

1, 0, 1, 4, 6, 7, 8, 0, 3, 1, 6, 0, 4, 1, 9, 2, 0, 5, 4, 5, 4, 6, 2, 5, 3, 4, 6, 5, 5, 0, 7, 3, 4, 4, 9, 0, 8, 8, 5, 1, 3, 2, 9, 0, 1, 7, 4, 2, 3, 8, 0, 6, 4, 7, 5, 9, 5, 2, 7, 9, 0, 2, 0, 1, 9, 7, 8, 8, 6, 3, 0, 7, 7, 6, 7, 5, 2, 8, 3, 2, 9, 3, 6, 4, 7, 1, 0, 2, 7, 8, 3, 6, 9, 5, 3, 4, 3, 6, 7, 2, 4, 0, 5
Offset: 1

Author

Keywords

Comments

Also the sum of the series Sum_{n>=0} (1/(2n+1)^4), whose value is obtained from zeta(4) given by L. Euler in 1735: Sum_{n>=0} (2n+1)^(-s) = (1-2^(-s))*zeta(s).
For the partial sums of this series see A120269/A128493. - Wolfdieter Lang, Sep 02 2019

Examples

			1.0146780316041920545462534655073449088513290174238064...
		

Programs

  • MATLAB
    format long; pi^4/96
  • Maple
    evalf((1/96)*Pi^4, 120)
  • Mathematica
    RealDigits[Pi^4/96, 10, 120][[1]]
  • PARI
    default(realprecision, 120); Pi^4/96
    

Formula

Equals A092425/96. - Omar E. Pol, Mar 11 2018
Equals (15/16)*zeta(4) = (15/16)*A013662. - Wolfdieter Lang, Sep 02 2019
Equals Sum_{k>=1} 1/(2*k-1)^4. - Sean A. Irvine, Mar 25 2025
Equals lambda(4), where lambda is the Dirichlet lambda function. - Michel Marcus, Aug 15 2025

A300690 Decimal expansion of sqrt(Pi^2/8 - 1).

Original entry on oeis.org

4, 8, 3, 4, 2, 5, 8, 4, 7, 6, 0, 8, 6, 7, 9, 0, 9, 9, 0, 1, 3, 7, 3, 2, 6, 3, 7, 0, 6, 3, 9, 3, 1, 7, 0, 2, 2, 3, 2, 8, 0, 1, 7, 2, 7, 6, 6, 5, 1, 4, 5, 9, 9, 4, 8, 6, 9, 3, 4, 5, 7, 2, 4, 6, 1, 7, 4, 7, 3, 1, 3, 8, 1, 6, 4, 0, 8, 0, 1, 6, 6, 1, 5, 0, 2, 8, 7, 2, 5, 3, 3, 3, 6, 4, 5, 5, 2, 0, 4, 5, 1, 0, 0
Offset: 0

Author

Keywords

Comments

Also the total harmonic distortion (THD) of a square wave, see formula (11) in the Blagouchine & Moreau link.

Examples

			0.4834258476086790990137326370639317022328017276651459...
		

Programs

  • MATLAB
    format long; sqrt(pi^2/8-1)
  • Maple
    evalf(sqrt((1/8)*Pi^2-1), 120)
  • Mathematica
    RealDigits[Sqrt[Pi^2/8 - 1], 10, 120][[1]]
  • PARI
    default(realprecision, 120); sqrt(Pi^2/8-1)
    

A300727 Decimal expansion of the total harmonic distortion (THD) of the sawtooth signal filtered by a 2nd-order low-pass filter.

Original entry on oeis.org

1, 8, 1, 1, 4, 1, 6, 1, 3, 7, 9, 3, 8, 2, 9, 0, 0, 4, 0, 8, 0, 2, 1, 8, 1, 0, 5, 5, 8, 1, 3, 0, 1, 6, 7, 8, 4, 4, 3, 8, 9, 2, 8, 3, 5, 1, 5, 9, 5, 6, 3, 5, 3, 8, 9, 1, 1, 5, 5, 6, 0, 6, 0, 8, 6, 2, 6, 4, 1, 4, 1, 9, 5, 6, 3, 6, 7, 9, 2, 4, 7, 3, 1, 6, 9, 8, 0, 7, 9, 1, 7, 9, 2, 7, 4, 4, 1, 6, 2, 1, 2, 2, 4
Offset: 0

Author

Keywords

Comments

See formula (34) in Blagouchine & Moreau link.

Examples

			0.1811416137938290040802181055813016784438928351595635...
		

Crossrefs

Cf. A247719 (Pi/sqrt(2)), A300690, A300713, A300714.

Programs

  • MATLAB
    format long; sqrt(sqrt(pi*(cot(pi/sqrt(2))*coth(pi/sqrt(2))^2-cot(pi/sqrt(2))^2*coth(pi/sqrt(2))-cot(pi/sqrt(2))-coth(pi/sqrt(2)))/((cot(pi/sqrt(2))^2+coth(pi/sqrt(2))^2)*sqrt(2))+(1/3)*pi^2-1))
    
  • Maple
    evalf(sqrt(Pi*(cot(Pi/sqrt(2))*coth(Pi/sqrt(2))^2-cot(Pi/sqrt(2))^2*coth(Pi/sqrt(2))-cot(Pi/sqrt(2))-coth(Pi/sqrt(2)))/((cot(Pi/sqrt(2))^2+coth(Pi/sqrt(2))^2)*sqrt(2))+(1/3)*Pi^2-1), 120)
  • Mathematica
    RealDigits[Sqrt[Pi*(Cot[Pi/Sqrt[2]]*Coth[Pi/Sqrt[2]]^2-Cot[Pi/Sqrt[2]]^2*Coth[Pi/Sqrt[2]]-Cot[Pi/Sqrt[2]]-Coth[Pi/Sqrt[2]])/((Cot[Pi/Sqrt[2]]^2+Coth[Pi/Sqrt[2]]^2)*Sqrt[2])+(1/3)*Pi^2-1], 10, 120][[1]]
  • PARI
    s2=sqrt(2);
    A=Pi/s2;
    B=1+2/(exp(2*A)-1)
    C=1/tan(A);
    sqrt(Pi*(B^2*C-B*C^2-C-B)/((C^2+B^2)*s2) + Pi^2/3 - 1) \\ Charles R Greathouse IV, Mar 11 2018

Formula

Equals sqrt(Pi*(cot(Pi/sqrt(2))*coth(Pi/sqrt(2))^2-cot(Pi/sqrt(2))^2*coth(Pi/sqrt(2))-cot(Pi/sqrt(2))-coth(Pi/sqrt(2)))/((cot(Pi/sqrt(2))^2+coth(Pi/sqrt(2))^2)*sqrt(2))+(1/3)*Pi^2-1).